keystone_remoteproc.c 28 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
/*
 * TI Keystone DSP remoteproc driver
 *
 * Copyright (C) 2015 Texas Instruments, Inc.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 */

#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/clk.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/spinlock.h>
#include <linux/platform_device.h>
#include <linux/workqueue.h>
#include <linux/of_address.h>
#include <linux/of_reserved_mem.h>
#include <linux/of_gpio.h>
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>
#include <linux/remoteproc.h>
#include <linux/miscdevice.h>
#include <linux/uio_driver.h>
#include <linux/reset.h>

#include <uapi/linux/keystone_remoteproc.h>

#include "remoteproc_internal.h"

#define DRIVER_NAME		"keystone-rproc"
#define DRIVER_VERSION		"0.1"

#define KEYSTONE_RPROC_MAX_RSC_TABLE		SZ_1K
#define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK	(SZ_16M - 1)

/*
 * XXX: make this a sysfs param so that the switch between userspace
 * and remoteproc core loaders can be controlled per device.
 */
static bool use_rproc_core_loader;
module_param(use_rproc_core_loader, bool, S_IRUGO);

/**
 * struct keystone_rproc_mem - internal memory structure
 * @cpu_addr: MPU virtual address of the memory region
 * @bus_addr: Bus address used to access the memory region
 * @dev_addr: Device address of the memory region from DSP view
 * @size: Size of the memory region
 */
struct keystone_rproc_mem {
	void __iomem *cpu_addr;
	phys_addr_t bus_addr;
	u32 dev_addr;
	size_t size;
};

/**
 * struct keystone_rproc - keystone remote processor driver structure
 * @dev: cached device pointer
 * @rproc: remoteproc device handle
 * @clk: clock handle
 * @mem: internal memory regions data
 * @num_mems: number of internal memory regions
 * @dev_ctrl: device control regmap handle
 * @psc_ctrl: power sleep controller regmap handle
 * @reset: reset control handle
 * @boot_offset: boot register offset in @dev_ctrl regmap
 * @mdctl_offset: module control register offset in @psc_ctrl regmap
 * @mdstat_offset: module status register offset in @psc_ctrl regmap
 * @irq_ring: irq entry for vring
 * @irq_fault: irq entry for exception
 * @kick_gpio: gpio used for virtio kicks
 * @workqueue: workqueue for processing virtio interrupts
 * @misc: misc device structure used to expose fops to user-space
 * @uio: uio device information
 * @mlock: lock to protect resources in fops
 * @lock: lock to protect shared resources within UIO interrupt handlers
 * @flags: flags to keep track of UIO interrupt occurrence
 * @rsc_table: resource table pointer copied from userspace
 * @rsc_table_size: size of resource table
 * @loaded_rsc_table: kernel pointer of loaded resource table
 * @open_count: fops open reference counter
 */
struct keystone_rproc {
	struct device *dev;
	struct rproc *rproc;
	struct clk *clk;
	struct keystone_rproc_mem *mem;
	int num_mems;
	struct regmap *dev_ctrl;
	struct reset_control *reset;
	u32 boot_offset;
	u32 mdctl_offset;
	u32 mdstat_offset;
	int irq_ring;
	int irq_fault;
	int kick_gpio;
	struct work_struct workqueue;
	struct miscdevice misc;
	struct uio_info uio;
	struct mutex mlock; /* fops lock */
	spinlock_t lock; /* uio handler lock */
	unsigned long flags;
	struct resource_table *rsc_table;
	int rsc_table_size;
	void *loaded_rsc_table;
	int open_count;
};

static void *keystone_rproc_da_to_va(struct rproc *rproc, u64 da, int len,
				     u32 flags);

/* uio handler dealing with userspace controlled exception interrupt */
static irqreturn_t keystone_rproc_uio_handler(int irq, struct uio_info *uio)
{
	struct keystone_rproc *ksproc = uio->priv;

	spin_lock(&ksproc->lock);
	if (!__test_and_set_bit(0, &ksproc->flags))
		disable_irq_nosync(irq);
	spin_unlock(&ksproc->lock);

	return IRQ_HANDLED;
}

/* uio driver interrupt control dealing with exception interrupt */
static int keystone_rproc_uio_irqcontrol(struct uio_info *uio, s32 irq_on)
{
	struct keystone_rproc *ksproc = uio->priv;
	unsigned long flags;

	spin_lock_irqsave(&ksproc->lock, flags);
	if (irq_on) {
		if (__test_and_clear_bit(0, &ksproc->flags))
			enable_irq(uio->irq);
	} else {
		if (!__test_and_set_bit(0, &ksproc->flags))
			disable_irq(uio->irq);
	}
	spin_unlock_irqrestore(&ksproc->lock, flags);

	return 0;
}

/*
 * Create/delete the virtio devices in kernel once the user-space loading is
 * complete, and configure the remoteproc states appropriately. The resource
 * table should have been published through the KEYSTONE_RPROC_IOC_SET_RSC_TABLE
 * and KEYSTONE_RPROC_IOC_SET_LOADED_RSC_TABLE ioctls before invoking this.
 *
 * XXX: Note that this is currently not really booting or resetting the
 * DSP devices. They are handled through KEYSTONE_RPROC_IOC_DSP_RESET and
 * KEYSTONE_RPROC_IOC_DSP_BOOT ioctls, and it needs to be evaluated if
 * there is a real need for those ioctls.
 */
static int keystone_rproc_set_state(struct keystone_rproc *ksproc,
				    enum keystone_rproc_state state)
{
	struct rproc *rproc = ksproc->rproc;
	int ret = 0;

	switch (state) {
	case KEYSTONE_RPROC_RUNNING:
		if (!ksproc->rsc_table || !ksproc->loaded_rsc_table)
			return -EINVAL;

		/*
		 * add virtio devices, rproc_boot will be invoked by remoteproc
		 * core if they are present
		 */
		rproc_add_vdevs_direct(rproc);

		/* process non virtio device resource table entries */
		if (list_empty(&rproc->rvdevs))
			ret = rproc_boot(rproc);
		break;

	case KEYSTONE_RPROC_OFFLINE:
		if (rproc->state != RPROC_RUNNING)
			return -EINVAL;

		/*
		 * invoke rproc_shutdown to match rproc_boot if there are no
		 * virtio devices. Otherwise, the removal of virtio devices
		 * below will automatically invoke the rproc_shutdown.
		 */
		if (list_empty(&rproc->rvdevs))
			rproc_shutdown(rproc);

		rproc_remove_vdevs_direct(rproc);

		break;

	default:
		ret = -ENOTSUPP;
	}

	return ret;
}

/* Copy the resource table from userspace into kernel */
static int keystone_rproc_set_rsc_table(struct keystone_rproc *ksproc,
					void __user *data)
{
	unsigned long len = 0;
	void *rsc_table = NULL;

	if (!data)
		return -EFAULT;

	if (copy_from_user(&len, data, sizeof(len)))
		return -EFAULT;

	if (len >= KEYSTONE_RPROC_MAX_RSC_TABLE)
		return -EOVERFLOW;

	data += sizeof(len);

	rsc_table = kzalloc(len, GFP_KERNEL);
	if (!rsc_table)
		return -ENOMEM;

	if (copy_from_user(rsc_table, data, len))
		goto error_return;

	mutex_lock(&ksproc->mlock);

	kfree(ksproc->rsc_table);

	ksproc->rsc_table = rsc_table;
	ksproc->rsc_table_size = len;
	ksproc->loaded_rsc_table = NULL;

	mutex_unlock(&ksproc->mlock);

	return 0;

error_return:
	kfree(rsc_table);
	return -EFAULT;
}

/*
 * Store the equivalent kernel virtual address of the loaded resource table in
 * device memory. Userspace published the device address of the loaded resource
 * table.
 */
static int keystone_rproc_set_loaded_rsc_table(struct keystone_rproc *ksproc,
					       unsigned int dma_addr)
{
	struct rproc *rproc = ksproc->rproc;
	void *ptr;

	if (!ksproc->rsc_table_size || !ksproc->rsc_table)
		return -EINVAL;

	ptr = keystone_rproc_da_to_va(rproc, dma_addr, ksproc->rsc_table_size,
				      RPROC_FLAGS_NONE);
	if (!ptr)
		return -EINVAL;

	ksproc->loaded_rsc_table = ptr;

	return 0;
}

/* Put the DSP processor into reset */
static void keystone_rproc_dsp_reset(struct keystone_rproc *ksproc)
{
	reset_control_assert(ksproc->reset);
}

/* Configure the boot address and boot the DSP processor */
static int keystone_rproc_dsp_boot(struct keystone_rproc *ksproc,
				   uint32_t boot_addr)
{
	int ret;

	if (boot_addr & (SZ_1K - 1)) {
		dev_err(ksproc->dev, "invalid boot address 0x%x, must be aligned on a 1KB boundary\n",
			boot_addr);
		return -EINVAL;
	}

	ret = regmap_write(ksproc->dev_ctrl, ksproc->boot_offset, boot_addr);
	if (ret) {
		dev_err(ksproc->dev, "regmap_write of boot address failed, status = %d\n",
			ret);
		return ret;
	}

	reset_control_deassert(ksproc->reset);

	return 0;
}

static long
keystone_rproc_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
	struct miscdevice *misc = filp->private_data;
	struct keystone_rproc *ksproc =
		container_of(misc, struct keystone_rproc, misc);
	void __user *argp = (void __user *)arg;
	int ret = 0;

	dev_dbg(ksproc->dev, "%s: cmd 0x%.8x (%d), arg 0x%lx\n",
		__func__, cmd, _IOC_NR(cmd), arg);

	if (_IOC_TYPE(cmd) != KEYSTONE_RPROC_IOC_MAGIC)
		return -ENOTTY;

	if (_IOC_NR(cmd) >= KEYSTONE_RPROC_IOC_MAXNR)
		return -ENOTTY;

	switch (cmd) {
	case KEYSTONE_RPROC_IOC_SET_STATE:
		ret = keystone_rproc_set_state(ksproc, arg);
		break;

	case KEYSTONE_RPROC_IOC_SET_RSC_TABLE:
		ret = keystone_rproc_set_rsc_table(ksproc, argp);
		break;

	case KEYSTONE_RPROC_IOC_SET_LOADED_RSC_TABLE:
		ret = keystone_rproc_set_loaded_rsc_table(ksproc, arg);
		break;

	case KEYSTONE_RPROC_IOC_DSP_RESET:
		keystone_rproc_dsp_reset(ksproc);
		break;

	case KEYSTONE_RPROC_IOC_DSP_BOOT:
		ret = keystone_rproc_dsp_boot(ksproc, arg);
		break;

	default:
		ret = -ENOTTY;
		break;
	}

	if (ret) {
		dev_err(ksproc->dev, "error in ioctl call: cmd 0x%.8x (%d), ret %d\n",
			cmd, _IOC_NR(cmd), ret);
	}

	return ret;
}

/*
 * Map DSP memories into userspace for supporting Userspace loading.
 *
 * This is a custom mmap function following semantics based on the UIO
 * mmap implementation. The vm_pgoff passed in the vma structure is a
 * combination of the memory region index and the actual page offset in
 * that region. This checks if user request is in valid range before
 * providing mmap access.
 *
 * XXX: Evaluate this approach, as the internal memories can be mapped in
 * whole into userspace as they are not super-large, or switch to using
 * direct addresses to look more like a traditional implementation.
 */
static int keystone_rproc_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct miscdevice *misc = file->private_data;
	struct keystone_rproc *ksproc =
		container_of(misc, struct keystone_rproc, misc);
	size_t size = vma->vm_end - vma->vm_start;
	size_t req_offset;
	u32 index;

	index = vma->vm_pgoff & KEYSTONE_RPROC_UIO_MAP_INDEX_MASK;

	if (index >= ksproc->num_mems) {
		dev_err(ksproc->dev, "invalid mmap region index %d\n", index);
		return -EINVAL;
	}

	req_offset = (vma->vm_pgoff - index) << PAGE_SHIFT;
	if (req_offset + size < req_offset) {
		dev_err(ksproc->dev, "invalid request - overflow, mmap offset = 0x%zx size 0x%zx region %d\n",
			req_offset, size, index);
		return -EINVAL;
	}

	if ((req_offset + size) > ksproc->mem[index].size) {
		dev_err(ksproc->dev, "invalid request - out of range, mmap offset 0x%zx size 0x%zx region %d\n",
			req_offset, size, index);
		return -EINVAL;
	}

	vma->vm_page_prot = phys_mem_access_prot(file,
				(ksproc->mem[index].bus_addr >> PAGE_SHIFT) +
				(vma->vm_pgoff - index), size,
				vma->vm_page_prot);

	if (remap_pfn_range(vma, vma->vm_start,
			    (ksproc->mem[index].bus_addr >> PAGE_SHIFT) +
			    (vma->vm_pgoff - index), size, vma->vm_page_prot))
		return -EAGAIN;

	return 0;
}

static int keystone_rproc_open(struct inode *inode, struct file *file)
{
	struct miscdevice *misc = file->private_data;
	struct keystone_rproc *ksproc =
		container_of(misc, struct keystone_rproc, misc);
	int ret = 0;

	mutex_lock(&ksproc->mlock);
	ksproc->open_count++;
	ret =  clk_prepare_enable(ksproc->clk);
	mutex_unlock(&ksproc->mlock);

	return ret;
}

static int keystone_rproc_release(struct inode *inode, struct file *filp)
{
	struct miscdevice *misc = filp->private_data;
	struct keystone_rproc *ksproc =
		container_of(misc, struct keystone_rproc, misc);
	struct rproc *rproc = ksproc->rproc;

	mutex_lock(&ksproc->mlock);

	if ((WARN_ON(ksproc->open_count == 0)))
		goto end;

	if (--ksproc->open_count > 0)
		goto end;

	if (rproc->state != RPROC_OFFLINE) {
		if (list_empty(&rproc->rvdevs))
			rproc_shutdown(rproc);
		rproc_remove_vdevs_direct(rproc);
		WARN_ON(rproc->state != RPROC_OFFLINE);
	}

	kfree(ksproc->rsc_table);
	ksproc->rsc_table = NULL;
	ksproc->loaded_rsc_table = NULL;
	ksproc->rsc_table_size = 0;

end:
	clk_disable_unprepare(ksproc->clk);
	mutex_unlock(&ksproc->mlock);
	return 0;
}

/*
 * File operations exposed through a miscdevice for supporting
 * the userspace loader/boot mechanism.
 */
static const struct file_operations keystone_rproc_fops = {
	.owner		= THIS_MODULE,
	.unlocked_ioctl	= keystone_rproc_ioctl,
	.mmap		= keystone_rproc_mmap,
	.open		= keystone_rproc_open,
	.release	= keystone_rproc_release,
};

/*
 * Used only with userspace loader/boot mechanism, the parsing of the firmware
 * is done in userspace, and a copy of the resource table is added for the
 * kernel-level access through an ioctl. Return the pointer to this resource
 * table for the remoteproc core to process the resource table for creating
 * the vrings and traces.
 */
static struct resource_table *
keystone_rproc_find_rsc_table(struct rproc *rproc, const struct firmware *fw,
			      int *tablesz)
{
	struct keystone_rproc *ksproc = rproc->priv;

	if (tablesz)
		*tablesz = ksproc->rsc_table_size;

	return ksproc->rsc_table;
}

/*
 * Used only with userspace loader/boot mechanism, the device address of the
 * loaded resource table is published to the kernel-level through an ioctl
 * at which point the equivalent kernel virtual pointer is stored in a local
 * variable in the keystone_rproc device structure. Return this kernel pointer
 * to the remoteproc core for runtime publishing/modification of the resource
 * table entries.
 *
 * NOTE: Only loaded resource tables in the DSP internal memories is supported
 *       at present.
 */
static struct resource_table *
keystone_rproc_find_loaded_rsc_table(struct rproc *rproc,
				     const struct firmware *fw)
{
	struct keystone_rproc *ksproc = rproc->priv;

	return ksproc->loaded_rsc_table;
}

/*
 * Used only with userspace loader/boot mechanism, otherwise the remoteproc
 * core elf loader's functions are relied on.
 */
static struct rproc_fw_ops keystone_rproc_fw_ops = {
	.find_rsc_table		= keystone_rproc_find_rsc_table,
	.find_loaded_rsc_table  = keystone_rproc_find_loaded_rsc_table,
};

/*
 * Process the remoteproc exceptions
 *
 * The exception reporting on Keystone DSP remote processors is very simple
 * to the equivalent processors on the OMAP family, it is notified through
 * a software-designed specific interrupt source in the IPC interrupt
 * generation register.
 *
 * This function just invokes the rproc_report_crash to report the exception
 * to the remoteproc driver core, to trigger a recovery. This is the case
 * only when using in-kernel remoteproc core loader/boot mechanism, and is
 * handled through an UIO interrupt otherwise.
 */
static irqreturn_t keystone_rproc_exception_interrupt(int irq, void *dev_id)
{
	struct keystone_rproc *ksproc = dev_id;

	rproc_report_crash(ksproc->rproc, RPROC_EXCEPTION);

	return IRQ_HANDLED;
}

/*
 * Main virtqueue message workqueue function
 *
 * This function is executed upon scheduling of the keystone remoteproc
 * driver's workqueue. The workqueue is scheduled by the vring ISR handler.
 *
 * There is no payload message indicating the virtqueue index as is the
 * case with mailbox-based implementations on OMAP family. As such, this
 * handler processes both the Tx and Rx virtqueue indices on every invocation.
 * The rproc_vq_interrupt function can detect if there are new unprocessed
 * messages or not (returns IRQ_NONE vs IRQ_HANDLED), but there is no need
 * to check for these return values. The index 0 triggering will process all
 * pending Rx buffers, and the index 1 triggering will process all newly
 * available Tx buffers and will wakeup any potentially blocked senders.
 *
 * NOTE:
 * 1. A payload could be added by using some of the source bits in the
 *    IPC interrupt generation registers, but this would need additional
 *    changes to the overall IPC stack, and currently there are no benefits
 *    of adapting that approach.
 * 2. The current logic is based on the inherent design in remoteproc core
 *    of support for only 2 vrings, but this can be changed if needed.
 */
static void handle_event(struct work_struct *work)
{
	struct keystone_rproc *ksproc =
		container_of(work, struct keystone_rproc, workqueue);

	rproc_vq_interrupt(ksproc->rproc, 0);
	rproc_vq_interrupt(ksproc->rproc, 1);
}

/*
 * Interrupt handler for processing vring kicks from remote processor
 */
static irqreturn_t keystone_rproc_vring_interrupt(int irq, void *dev_id)
{
	struct keystone_rproc *ksproc = dev_id;

	schedule_work(&ksproc->workqueue);

	return IRQ_HANDLED;
}

/*
 * Power up the DSP remote processor.
 *
 * This function will be invoked only after the firmware for this rproc
 * was loaded, parsed successfully, and all of its resource requirements
 * were met. The function skips releasing the processor from reset and
 * registering for the exception interrupt if using the userspace controlled
 * load/boot mechanism. The processor will be started through an ioctl when
 * controlled from userspace, but the virtio interrupt still is handled at
 * the kernel layer.
 */
static int keystone_rproc_start(struct rproc *rproc)
{
	struct keystone_rproc *ksproc = rproc->priv;
	int ret;

	INIT_WORK(&ksproc->workqueue, handle_event);

	ret = request_irq(ksproc->irq_ring, keystone_rproc_vring_interrupt, 0,
			  dev_name(ksproc->dev), ksproc);
	if (ret) {
		dev_err(ksproc->dev, "failed to enable vring interrupt, ret = %d\n",
			ret);
		goto out;
	}

	if (rproc->use_userspace_loader)
		goto out;

	ret = request_irq(ksproc->irq_fault, keystone_rproc_exception_interrupt,
			  IRQF_ONESHOT, dev_name(ksproc->dev), ksproc);
	if (ret) {
		dev_err(ksproc->dev, "failed to enable exception interrupt, ret = %d\n",
			ret);
		goto free_vring_irq;
	}

	ret = keystone_rproc_dsp_boot(ksproc, rproc->bootaddr);
	if (ret)
		goto free_exc_irq;

	return 0;

free_exc_irq:
	free_irq(ksproc->irq_fault, ksproc);
free_vring_irq:
	free_irq(ksproc->irq_ring, ksproc);
	flush_work(&ksproc->workqueue);
out:
	return ret;
}

/*
 * Stop the DSP remote processor.
 *
 * This function puts the DSP processor into reset, and finishes processing
 * of any pending messages. The reset procedure is completed only if using
 * kernel-mode remoteproc loading/booting mechanism, it is handled outside
 * if using userspace load/boot mechanism either through an ioctl, or when
 * the handle to the device is closed without triggering a reset.
 */
static int keystone_rproc_stop(struct rproc *rproc)
{
	struct keystone_rproc *ksproc = rproc->priv;

	if (!rproc->use_userspace_loader) {
		keystone_rproc_dsp_reset(ksproc);
		free_irq(ksproc->irq_fault, ksproc);
	}

	free_irq(ksproc->irq_ring, ksproc);
	flush_work(&ksproc->workqueue);
	return 0;
}

/*
 * Kick the remote processor to notify about pending unprocessed messages.
 * The vqid usage is not used and is inconsequential, as the kick is performed
 * through a simulated GPIO (an bit in an IPC interrupt-triggering register),
 * the remote processor is expected to process both its Tx and Rx virtqueues.
 */
static void keystone_rproc_kick(struct rproc *rproc, int vqid)
{
	struct keystone_rproc *ksproc = rproc->priv;

	if (WARN_ON(ksproc->kick_gpio < 0))
		return;

	gpio_set_value(ksproc->kick_gpio, 1);
}

/*
 * Custom function to translate a DSP device address (internal RAMs only) to a
 * kernel virtual address.  The DSPs can access their RAMs at either an internal
 * address visible only from a DSP, or at the SoC-level bus address. Both these
 * addresses need to be looked through for translation. The translated addresses
 * can be used either by the remoteproc core for loading (when using kernel
 * remoteproc loader), or by any rpmsg bus drivers.
 */
static void *keystone_rproc_da_to_va(struct rproc *rproc, u64 da, int len,
				     u32 flags)
{
	struct keystone_rproc *ksproc = rproc->priv;
	void __iomem *va = NULL;
	phys_addr_t bus_addr;
	u32 dev_addr, offset;
	size_t size;
	int i;

	if (len <= 0)
		return NULL;

	for (i = 0; i < ksproc->num_mems; i++) {
		bus_addr = ksproc->mem[i].bus_addr;
		dev_addr = ksproc->mem[i].dev_addr;
		size = ksproc->mem[i].size;

		if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) {
			/* handle DSP-view addresses */
			if ((da >= dev_addr) &&
			    ((da + len) <= (dev_addr + size))) {
				offset = da - dev_addr;
				va = ksproc->mem[i].cpu_addr + offset;
				break;
			}
		} else {
			/* handle SoC-view addresses */
			if ((da >= bus_addr) &&
			    (da + len) <= (bus_addr + size)) {
				offset = da - bus_addr;
				va = ksproc->mem[i].cpu_addr + offset;
				break;
			}
		}
	}

	return (__force void *)va;
}

static struct rproc_ops keystone_rproc_ops = {
	.start		= keystone_rproc_start,
	.stop		= keystone_rproc_stop,
	.kick		= keystone_rproc_kick,
	.da_to_va	= keystone_rproc_da_to_va,
};

static int keystone_rproc_of_get_memories(struct platform_device *pdev,
					  struct keystone_rproc *ksproc)
{
	static const char * const mem_names[] = {"l2sram", "l1pram", "l1dram"};
	struct device *dev = &pdev->dev;
	struct resource *res;
	int num_mems = 0;
	int i;

	num_mems = ARRAY_SIZE(mem_names);
	ksproc->mem = devm_kcalloc(ksproc->dev, num_mems,
				   sizeof(*ksproc->mem), GFP_KERNEL);
	if (!ksproc->mem)
		return -ENOMEM;

	for (i = 0; i < num_mems; i++) {
		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
						   mem_names[i]);
		ksproc->mem[i].cpu_addr = devm_ioremap_resource(dev, res);
		if (IS_ERR(ksproc->mem[i].cpu_addr)) {
			dev_err(dev, "failed to parse and map %s memory\n",
				mem_names[i]);
			return PTR_ERR(ksproc->mem[i].cpu_addr);
		}
		ksproc->mem[i].bus_addr = res->start;
		ksproc->mem[i].dev_addr =
				res->start & KEYSTONE_RPROC_LOCAL_ADDRESS_MASK;
		ksproc->mem[i].size = resource_size(res);

		/* zero out memories to start in a pristine state */
		memset((__force void *)ksproc->mem[i].cpu_addr, 0,
		       ksproc->mem[i].size);
	}
	ksproc->num_mems = num_mems;

	return 0;
}

static int keystone_rproc_of_get_dev_syscon(struct platform_device *pdev,
					    struct keystone_rproc *ksproc)
{
	struct device_node *np = pdev->dev.of_node;
	struct device *dev = &pdev->dev;
	int ret;

	if (!of_property_read_bool(np, "ti,syscon-dev")) {
		dev_err(dev, "ti,syscon-dev property is absent\n");
		return -EINVAL;
	}

	ksproc->dev_ctrl =
		syscon_regmap_lookup_by_phandle(np, "ti,syscon-dev");
	if (IS_ERR(ksproc->dev_ctrl)) {
		ret = PTR_ERR(ksproc->dev_ctrl);
		return ret;
	}

	if (of_property_read_u32_index(np, "ti,syscon-dev", 1,
				       &ksproc->boot_offset)) {
		dev_err(dev, "couldn't read the boot register offset\n");
		return -EINVAL;
	}

	return 0;
}

static int keystone_rproc_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct device_node *np = dev->of_node;
	struct keystone_rproc *ksproc;
	struct miscdevice *misc;
	struct uio_info *uio;
	struct rproc *rproc;
	char *name, *fw_name = NULL;
	char *template = "keystone-%s-fw";
	int name_len = 0;
	int ret = 0;

	if (!np) {
		dev_err(dev, "only DT-based devices are supported\n");
		return -ENODEV;
	}

	/*
	 * construct a user-friendly device name by discarding any prefixes
	 * from the DT-generated device name before the dspX name. Note that
	 * the current device names are expected to have the DSP number as a
	 * suffix in the DT device node name
	 */
	name = strchr(dev_name(dev), '.');
	if (!name)
		name = strchr(dev_name(dev), ':');
	name = name ? name + 1 : (char *)dev_name(dev);

	/* construct a custom default fw name - subject to change in future */
	name_len = strlen(name) + strlen(template) - 2 + 1;
	fw_name = devm_kzalloc(dev, name_len, GFP_KERNEL);
	if (!fw_name)
		return -ENOMEM;
	snprintf(fw_name, name_len, template, name);

	rproc = rproc_alloc(dev, dev_name(dev), &keystone_rproc_ops, fw_name,
			    sizeof(*ksproc));
	if (!rproc)
		return -ENOMEM;

	rproc->has_iommu = false;
	rproc->use_userspace_loader = !use_rproc_core_loader;
	if (rproc->use_userspace_loader) {
		rproc->recovery_disabled = true;
		rproc->fw_ops = &keystone_rproc_fw_ops;
	}

	ksproc = rproc->priv;
	ksproc->rproc = rproc;
	ksproc->dev = dev;
	mutex_init(&ksproc->mlock);
	spin_lock_init(&ksproc->lock);

	ret = keystone_rproc_of_get_dev_syscon(pdev, ksproc);
	if (ret)
		goto free_rproc;

	ksproc->reset = devm_reset_control_get(dev, NULL);
	if (IS_ERR(ksproc->reset)) {
		ret = PTR_ERR(ksproc->reset);
		goto free_rproc;
	}

	ksproc->clk = devm_clk_get(dev, NULL);
	if (IS_ERR(ksproc->clk)) {
		ret = PTR_ERR(ksproc->clk);
		dev_err(dev, "failed to get clock, status = %d\n", ret);
		goto free_rproc;
	}

	/* enable clock for accessing DSP internal memories */
	ret = clk_prepare_enable(ksproc->clk);
	if (ret) {
		dev_err(dev, "failed to enable clock, status = %d\n", ret);
		goto free_rproc;
	}

	ret = keystone_rproc_of_get_memories(pdev, ksproc);
	if (ret)
		goto disable_clk;

	ksproc->irq_ring = platform_get_irq_byname(pdev, "vring");
	if (ksproc->irq_ring < 0) {
		ret = ksproc->irq_ring;
		dev_err(dev, "failed to get vring interrupt, status = %d\n",
			ret);
		goto disable_clk;
	}

	ksproc->irq_fault = platform_get_irq_byname(pdev, "exception");
	if (ksproc->irq_fault < 0) {
		ret = ksproc->irq_fault;
		dev_err(dev, "failed to get exception interrupt, status = %d\n",
			ret);
		goto disable_clk;
	}

	ksproc->kick_gpio = of_get_named_gpio_flags(np, "kick-gpio", 0, NULL);
	if (ksproc->kick_gpio < 0) {
		ret = ksproc->kick_gpio;
		dev_err(dev, "failed to get gpio for virtio kicks, status = %d\n",
			ret);
		goto disable_clk;
	}

	if (of_reserved_mem_device_init(dev))
		dev_warn(dev, "device does not have specific CMA pool\n");

	if (rproc_get_alias_id(rproc) < 0)
		dev_warn(&pdev->dev, "device does not have an alias id\n");

	/* ensure the DSP is in reset before loading firmware */
	ret = reset_control_status(ksproc->reset);
	if (ret < 0) {
		dev_err(dev, "failed to get reset status, status = %d\n", ret);
		goto release_mem;
	} else if (ret == 0) {
		WARN(1, "device is not in reset\n");
		keystone_rproc_dsp_reset(ksproc);
	}

	ret = rproc_add(rproc);
	if (ret) {
		dev_err(dev, "failed to add register device with remoteproc core, status = %d\n",
			ret);
		goto release_mem;
	}

	platform_set_drvdata(pdev, ksproc);

	if (rproc->use_userspace_loader) {
		uio = &ksproc->uio;
		uio->name = name;
		uio->version = DRIVER_VERSION;
		uio->irq = ksproc->irq_fault;
		uio->priv = ksproc;
		uio->handler = keystone_rproc_uio_handler;
		uio->irqcontrol	= keystone_rproc_uio_irqcontrol;
		ret = uio_register_device(dev, uio);
		if (ret) {
			dev_err(dev, "failed to register uio device, status = %d\n",
				ret);
			goto del_rproc;
		}
		dev_dbg(dev, "registered uio device %s\n", uio->name);

		misc = &ksproc->misc;
		misc->minor = MISC_DYNAMIC_MINOR;
		misc->name = uio->name;
		misc->fops = &keystone_rproc_fops;
		misc->parent = dev;
		ret = misc_register(misc);
		if (ret) {
			dev_err(dev, "failed to register misc device, status = %d\n",
				ret);
			goto unregister_uio;
		}
		dev_dbg(dev, "registered misc device %s\n", misc->name);
	}

	return 0;

unregister_uio:
	uio_unregister_device(uio);
del_rproc:
	rproc_del(rproc);
release_mem:
	of_reserved_mem_device_release(dev);
disable_clk:
	clk_disable_unprepare(ksproc->clk);
free_rproc:
	rproc_put(rproc);
	return ret;
}

static int keystone_rproc_remove(struct platform_device *pdev)
{
	struct keystone_rproc *ksproc = platform_get_drvdata(pdev);
	struct rproc *rproc = ksproc->rproc;

	if (rproc->use_userspace_loader) {
		misc_deregister(&ksproc->misc);
		uio_unregister_device(&ksproc->uio);
	}
	rproc_del(ksproc->rproc);
	clk_disable_unprepare(ksproc->clk);
	rproc_put(ksproc->rproc);
	of_reserved_mem_device_release(&pdev->dev);

	return 0;
}

static const struct of_device_id keystone_rproc_of_match[] = {
	{ .compatible = "ti,k2hk-dsp", },
	{ .compatible = "ti,k2l-dsp", },
	{ .compatible = "ti,k2e-dsp", },
	{ .compatible = "ti,k2g-dsp", },
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, keystone_rproc_of_match);

static struct platform_driver keystone_rproc_driver = {
	.probe	= keystone_rproc_probe,
	.remove	= keystone_rproc_remove,
	.driver	= {
		.name = DRIVER_NAME,
		.of_match_table = keystone_rproc_of_match,
	},
};

module_platform_driver(keystone_rproc_driver);

MODULE_AUTHOR("Sam Nelson Siluvaimani");
MODULE_AUTHOR("Suman Anna");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("TI Keystone DSP Remoteproc driver");
MODULE_ALIAS("platform:" DRIVER_NAME);