omap2.c 59 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
/*
 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
 * Copyright © 2004 Micron Technology Inc.
 * Copyright © 2004 David Brownell
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/platform_device.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/jiffies.h>
#include <linux/sched.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/omap-dma.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_device.h>

#include <linux/mtd/nand_bch.h>
#include <linux/platform_data/elm.h>

#include <linux/platform_data/mtd-nand-omap2.h>

#define	DRIVER_NAME	"omap2-nand"
#define	OMAP_NAND_TIMEOUT_MS	5000

#define NAND_Ecc_P1e		(1 << 0)
#define NAND_Ecc_P2e		(1 << 1)
#define NAND_Ecc_P4e		(1 << 2)
#define NAND_Ecc_P8e		(1 << 3)
#define NAND_Ecc_P16e		(1 << 4)
#define NAND_Ecc_P32e		(1 << 5)
#define NAND_Ecc_P64e		(1 << 6)
#define NAND_Ecc_P128e		(1 << 7)
#define NAND_Ecc_P256e		(1 << 8)
#define NAND_Ecc_P512e		(1 << 9)
#define NAND_Ecc_P1024e		(1 << 10)
#define NAND_Ecc_P2048e		(1 << 11)

#define NAND_Ecc_P1o		(1 << 16)
#define NAND_Ecc_P2o		(1 << 17)
#define NAND_Ecc_P4o		(1 << 18)
#define NAND_Ecc_P8o		(1 << 19)
#define NAND_Ecc_P16o		(1 << 20)
#define NAND_Ecc_P32o		(1 << 21)
#define NAND_Ecc_P64o		(1 << 22)
#define NAND_Ecc_P128o		(1 << 23)
#define NAND_Ecc_P256o		(1 << 24)
#define NAND_Ecc_P512o		(1 << 25)
#define NAND_Ecc_P1024o		(1 << 26)
#define NAND_Ecc_P2048o		(1 << 27)

#define TF(value)	(value ? 1 : 0)

#define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0)
#define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1)
#define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2)
#define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3)
#define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4)
#define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5)
#define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6)
#define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7)

#define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0)
#define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1)
#define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2)
#define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3)
#define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4)
#define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5)
#define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6)
#define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7)

#define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0)
#define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1)
#define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2)
#define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3)
#define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4)
#define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5)
#define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6)
#define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7)

#define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0)
#define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1)
#define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2)
#define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3)
#define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4)
#define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5)
#define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6)
#define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7)

#define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0)
#define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1)

#define	PREFETCH_CONFIG1_CS_SHIFT	24
#define	ECC_CONFIG_CS_SHIFT		1
#define	CS_MASK				0x7
#define	ENABLE_PREFETCH			(0x1 << 7)
#define	DMA_MPU_MODE_SHIFT		2
#define	ECCSIZE0_SHIFT			12
#define	ECCSIZE1_SHIFT			22
#define	ECC1RESULTSIZE			0x1
#define	ECCCLEAR			0x100
#define	ECC1				0x1
#define	PREFETCH_FIFOTHRESHOLD_MAX	0x40
#define	PREFETCH_FIFOTHRESHOLD(val)	((val) << 8)
#define	PREFETCH_STATUS_COUNT(val)	(val & 0x00003fff)
#define	PREFETCH_STATUS_FIFO_CNT(val)	((val >> 24) & 0x7F)
#define	STATUS_BUFF_EMPTY		0x00000001

#define OMAP24XX_DMA_GPMC		4

#define SECTOR_BYTES		512
/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
#define BCH4_BIT_PAD		4

/* GPMC ecc engine settings for read */
#define BCH_WRAPMODE_1		1	/* BCH wrap mode 1 */
#define BCH8R_ECC_SIZE0		0x1a	/* ecc_size0 = 26 */
#define BCH8R_ECC_SIZE1		0x2	/* ecc_size1 = 2 */
#define BCH4R_ECC_SIZE0		0xd	/* ecc_size0 = 13 */
#define BCH4R_ECC_SIZE1		0x3	/* ecc_size1 = 3 */

/* GPMC ecc engine settings for write */
#define BCH_WRAPMODE_6		6	/* BCH wrap mode 6 */
#define BCH_ECC_SIZE0		0x0	/* ecc_size0 = 0, no oob protection */
#define BCH_ECC_SIZE1		0x20	/* ecc_size1 = 32 */

#define BADBLOCK_MARKER_LENGTH		2

static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
				0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
				0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
				0x07, 0x0e};
static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
	0xac, 0x6b, 0xff, 0x99, 0x7b};
static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};

/* Shared among all NAND instances to synchronize access to the ECC Engine */
static struct nand_hw_control omap_gpmc_controller = {
	.lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
	.wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
};

struct omap_nand_info {
	struct omap_nand_platform_data	*pdata;
	struct mtd_info			mtd;
	struct nand_chip		nand;
	struct platform_device		*pdev;

	int				gpmc_cs;
	unsigned long			phys_base;
	enum omap_ecc			ecc_opt;
	struct completion		comp;
	struct dma_chan			*dma;
	int				gpmc_irq_fifo;
	int				gpmc_irq_count;
	enum {
		OMAP_NAND_IO_READ = 0,	/* read */
		OMAP_NAND_IO_WRITE,	/* write */
	} iomode;
	u_char				*buf;
	int					buf_len;
	struct gpmc_nand_regs		reg;
	/* generated at runtime depending on ECC algorithm and layout selected */
	struct nand_ecclayout		oobinfo;
	/* fields specific for BCHx_HW ECC scheme */
	struct device			*elm_dev;
	struct device_node		*of_node;
};

/**
 * omap_prefetch_enable - configures and starts prefetch transfer
 * @cs: cs (chip select) number
 * @fifo_th: fifo threshold to be used for read/ write
 * @dma_mode: dma mode enable (1) or disable (0)
 * @u32_count: number of bytes to be transferred
 * @is_write: prefetch read(0) or write post(1) mode
 */
static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
	unsigned int u32_count, int is_write, struct omap_nand_info *info)
{
	u32 val;

	if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
		return -1;

	if (readl(info->reg.gpmc_prefetch_control))
		return -EBUSY;

	/* Set the amount of bytes to be prefetched */
	writel(u32_count, info->reg.gpmc_prefetch_config2);

	/* Set dma/mpu mode, the prefetch read / post write and
	 * enable the engine. Set which cs is has requested for.
	 */
	val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
		PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
		(dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
	writel(val, info->reg.gpmc_prefetch_config1);

	/*  Start the prefetch engine */
	writel(0x1, info->reg.gpmc_prefetch_control);

	return 0;
}

/**
 * omap_prefetch_reset - disables and stops the prefetch engine
 */
static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
{
	u32 config1;

	/* check if the same module/cs is trying to reset */
	config1 = readl(info->reg.gpmc_prefetch_config1);
	if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
		return -EINVAL;

	/* Stop the PFPW engine */
	writel(0x0, info->reg.gpmc_prefetch_control);

	/* Reset/disable the PFPW engine */
	writel(0x0, info->reg.gpmc_prefetch_config1);

	return 0;
}

/**
 * omap_hwcontrol - hardware specific access to control-lines
 * @mtd: MTD device structure
 * @cmd: command to device
 * @ctrl:
 * NAND_NCE: bit 0 -> don't care
 * NAND_CLE: bit 1 -> Command Latch
 * NAND_ALE: bit 2 -> Address Latch
 *
 * NOTE: boards may use different bits for these!!
 */
static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
	struct omap_nand_info *info = container_of(mtd,
					struct omap_nand_info, mtd);

	if (cmd != NAND_CMD_NONE) {
		if (ctrl & NAND_CLE)
			writeb(cmd, info->reg.gpmc_nand_command);

		else if (ctrl & NAND_ALE)
			writeb(cmd, info->reg.gpmc_nand_address);

		else /* NAND_NCE */
			writeb(cmd, info->reg.gpmc_nand_data);
	}
}

/**
 * omap_read_buf8 - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *nand = mtd->priv;

	ioread8_rep(nand->IO_ADDR_R, buf, len);
}

/**
 * omap_write_buf8 - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	u_char *p = (u_char *)buf;
	u32	status = 0;

	while (len--) {
		iowrite8(*p++, info->nand.IO_ADDR_W);
		/* wait until buffer is available for write */
		do {
			status = readl(info->reg.gpmc_status) &
					STATUS_BUFF_EMPTY;
		} while (!status);
	}
}

/**
 * omap_read_buf16 - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *nand = mtd->priv;

	ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
}

/**
 * omap_write_buf16 - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	u16 *p = (u16 *) buf;
	u32	status = 0;
	/* FIXME try bursts of writesw() or DMA ... */
	len >>= 1;

	while (len--) {
		iowrite16(*p++, info->nand.IO_ADDR_W);
		/* wait until buffer is available for write */
		do {
			status = readl(info->reg.gpmc_status) &
					STATUS_BUFF_EMPTY;
		} while (!status);
	}
}

/**
 * omap_read_buf_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	uint32_t r_count = 0;
	int ret = 0;
	u32 *p = (u32 *)buf;

	/* take care of subpage reads */
	if (len % 4) {
		if (info->nand.options & NAND_BUSWIDTH_16)
			omap_read_buf16(mtd, buf, len % 4);
		else
			omap_read_buf8(mtd, buf, len % 4);
		p = (u32 *) (buf + len % 4);
		len -= len % 4;
	}

	/* configure and start prefetch transfer */
	ret = omap_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
	if (ret) {
		/* PFPW engine is busy, use cpu copy method */
		if (info->nand.options & NAND_BUSWIDTH_16)
			omap_read_buf16(mtd, (u_char *)p, len);
		else
			omap_read_buf8(mtd, (u_char *)p, len);
	} else {
		do {
			r_count = readl(info->reg.gpmc_prefetch_status);
			r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
			r_count = r_count >> 2;
			ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
			p += r_count;
			len -= r_count << 2;
		} while (len);
		/* disable and stop the PFPW engine */
		omap_prefetch_reset(info->gpmc_cs, info);
	}
}

/**
 * omap_write_buf_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	uint32_t w_count = 0;
	int i = 0, ret = 0;
	u16 *p = (u16 *)buf;
	unsigned long tim, limit;
	u32 val;

	/* take care of subpage writes */
	if (len % 2 != 0) {
		writeb(*buf, info->nand.IO_ADDR_W);
		p = (u16 *)(buf + 1);
		len--;
	}

	/*  configure and start prefetch transfer */
	ret = omap_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
	if (ret) {
		/* PFPW engine is busy, use cpu copy method */
		if (info->nand.options & NAND_BUSWIDTH_16)
			omap_write_buf16(mtd, (u_char *)p, len);
		else
			omap_write_buf8(mtd, (u_char *)p, len);
	} else {
		while (len) {
			w_count = readl(info->reg.gpmc_prefetch_status);
			w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
			w_count = w_count >> 1;
			for (i = 0; (i < w_count) && len; i++, len -= 2)
				iowrite16(*p++, info->nand.IO_ADDR_W);
		}
		/* wait for data to flushed-out before reset the prefetch */
		tim = 0;
		limit = (loops_per_jiffy *
					msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
		do {
			cpu_relax();
			val = readl(info->reg.gpmc_prefetch_status);
			val = PREFETCH_STATUS_COUNT(val);
		} while (val && (tim++ < limit));

		/* disable and stop the PFPW engine */
		omap_prefetch_reset(info->gpmc_cs, info);
	}
}

/*
 * omap_nand_dma_callback: callback on the completion of dma transfer
 * @data: pointer to completion data structure
 */
static void omap_nand_dma_callback(void *data)
{
	complete((struct completion *) data);
}

/*
 * omap_nand_dma_transfer: configure and start dma transfer
 * @mtd: MTD device structure
 * @addr: virtual address in RAM of source/destination
 * @len: number of data bytes to be transferred
 * @is_write: flag for read/write operation
 */
static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
					unsigned int len, int is_write)
{
	struct omap_nand_info *info = container_of(mtd,
					struct omap_nand_info, mtd);
	struct dma_async_tx_descriptor *tx;
	enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
							DMA_FROM_DEVICE;
	struct scatterlist sg;
	unsigned long tim, limit;
	unsigned n;
	int ret;
	u32 val;

	if (addr >= high_memory) {
		struct page *p1;

		if (((size_t)addr & PAGE_MASK) !=
			((size_t)(addr + len - 1) & PAGE_MASK))
			goto out_copy;
		p1 = vmalloc_to_page(addr);
		if (!p1)
			goto out_copy;
		addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
	}

	sg_init_one(&sg, addr, len);
	n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
	if (n == 0) {
		dev_err(&info->pdev->dev,
			"Couldn't DMA map a %d byte buffer\n", len);
		goto out_copy;
	}

	tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
		is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!tx)
		goto out_copy_unmap;

	tx->callback = omap_nand_dma_callback;
	tx->callback_param = &info->comp;
	dmaengine_submit(tx);

	/*  configure and start prefetch transfer */
	ret = omap_prefetch_enable(info->gpmc_cs,
		PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
	if (ret)
		/* PFPW engine is busy, use cpu copy method */
		goto out_copy_unmap;

	init_completion(&info->comp);
	dma_async_issue_pending(info->dma);

	/* setup and start DMA using dma_addr */
	wait_for_completion(&info->comp);
	tim = 0;
	limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));

	do {
		cpu_relax();
		val = readl(info->reg.gpmc_prefetch_status);
		val = PREFETCH_STATUS_COUNT(val);
	} while (val && (tim++ < limit));

	/* disable and stop the PFPW engine */
	omap_prefetch_reset(info->gpmc_cs, info);

	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
	return 0;

out_copy_unmap:
	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
			: omap_write_buf16(mtd, (u_char *) addr, len);
	else
		is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
			: omap_write_buf8(mtd, (u_char *) addr, len);
	return 0;
}

/**
 * omap_read_buf_dma_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	if (len <= mtd->oobsize)
		omap_read_buf_pref(mtd, buf, len);
	else
		/* start transfer in DMA mode */
		omap_nand_dma_transfer(mtd, buf, len, 0x0);
}

/**
 * omap_write_buf_dma_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_dma_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	if (len <= mtd->oobsize)
		omap_write_buf_pref(mtd, buf, len);
	else
		/* start transfer in DMA mode */
		omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
}

/*
 * omap_nand_irq - GPMC irq handler
 * @this_irq: gpmc irq number
 * @dev: omap_nand_info structure pointer is passed here
 */
static irqreturn_t omap_nand_irq(int this_irq, void *dev)
{
	struct omap_nand_info *info = (struct omap_nand_info *) dev;
	u32 bytes;

	bytes = readl(info->reg.gpmc_prefetch_status);
	bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
	bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
	if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
		if (this_irq == info->gpmc_irq_count)
			goto done;

		if (info->buf_len && (info->buf_len < bytes))
			bytes = info->buf_len;
		else if (!info->buf_len)
			bytes = 0;
		iowrite32_rep(info->nand.IO_ADDR_W,
						(u32 *)info->buf, bytes >> 2);
		info->buf = info->buf + bytes;
		info->buf_len -= bytes;

	} else {
		ioread32_rep(info->nand.IO_ADDR_R,
						(u32 *)info->buf, bytes >> 2);
		info->buf = info->buf + bytes;

		if (this_irq == info->gpmc_irq_count)
			goto done;
	}

	return IRQ_HANDLED;

done:
	complete(&info->comp);

	disable_irq_nosync(info->gpmc_irq_fifo);
	disable_irq_nosync(info->gpmc_irq_count);

	return IRQ_HANDLED;
}

/*
 * omap_read_buf_irq_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	int ret = 0;

	if (len <= mtd->oobsize) {
		omap_read_buf_pref(mtd, buf, len);
		return;
	}

	info->iomode = OMAP_NAND_IO_READ;
	info->buf = buf;
	init_completion(&info->comp);

	/*  configure and start prefetch transfer */
	ret = omap_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
	if (ret)
		/* PFPW engine is busy, use cpu copy method */
		goto out_copy;

	info->buf_len = len;

	enable_irq(info->gpmc_irq_count);
	enable_irq(info->gpmc_irq_fifo);

	/* waiting for read to complete */
	wait_for_completion(&info->comp);

	/* disable and stop the PFPW engine */
	omap_prefetch_reset(info->gpmc_cs, info);
	return;

out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		omap_read_buf16(mtd, buf, len);
	else
		omap_read_buf8(mtd, buf, len);
}

/*
 * omap_write_buf_irq_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_irq_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	int ret = 0;
	unsigned long tim, limit;
	u32 val;

	if (len <= mtd->oobsize) {
		omap_write_buf_pref(mtd, buf, len);
		return;
	}

	info->iomode = OMAP_NAND_IO_WRITE;
	info->buf = (u_char *) buf;
	init_completion(&info->comp);

	/* configure and start prefetch transfer : size=24 */
	ret = omap_prefetch_enable(info->gpmc_cs,
		(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
	if (ret)
		/* PFPW engine is busy, use cpu copy method */
		goto out_copy;

	info->buf_len = len;

	enable_irq(info->gpmc_irq_count);
	enable_irq(info->gpmc_irq_fifo);

	/* waiting for write to complete */
	wait_for_completion(&info->comp);

	/* wait for data to flushed-out before reset the prefetch */
	tim = 0;
	limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
	do {
		val = readl(info->reg.gpmc_prefetch_status);
		val = PREFETCH_STATUS_COUNT(val);
		cpu_relax();
	} while (val && (tim++ < limit));

	/* disable and stop the PFPW engine */
	omap_prefetch_reset(info->gpmc_cs, info);
	return;

out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		omap_write_buf16(mtd, buf, len);
	else
		omap_write_buf8(mtd, buf, len);
}

/**
 * gen_true_ecc - This function will generate true ECC value
 * @ecc_buf: buffer to store ecc code
 *
 * This generated true ECC value can be used when correcting
 * data read from NAND flash memory core
 */
static void gen_true_ecc(u8 *ecc_buf)
{
	u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
		((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);

	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
			P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
			P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
	ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
			P1e(tmp) | P2048o(tmp) | P2048e(tmp));
}

/**
 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
 * @ecc_data1:  ecc code from nand spare area
 * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
 * @page_data:  page data
 *
 * This function compares two ECC's and indicates if there is an error.
 * If the error can be corrected it will be corrected to the buffer.
 * If there is no error, %0 is returned. If there is an error but it
 * was corrected, %1 is returned. Otherwise, %-1 is returned.
 */
static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */
			    u8 *ecc_data2,	/* read from register */
			    u8 *page_data)
{
	uint	i;
	u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
	u8	comp0_bit[8], comp1_bit[8], comp2_bit[8];
	u8	ecc_bit[24];
	u8	ecc_sum = 0;
	u8	find_bit = 0;
	uint	find_byte = 0;
	int	isEccFF;

	isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);

	gen_true_ecc(ecc_data1);
	gen_true_ecc(ecc_data2);

	for (i = 0; i <= 2; i++) {
		*(ecc_data1 + i) = ~(*(ecc_data1 + i));
		*(ecc_data2 + i) = ~(*(ecc_data2 + i));
	}

	for (i = 0; i < 8; i++) {
		tmp0_bit[i]     = *ecc_data1 % 2;
		*ecc_data1	= *ecc_data1 / 2;
	}

	for (i = 0; i < 8; i++) {
		tmp1_bit[i]	 = *(ecc_data1 + 1) % 2;
		*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
	}

	for (i = 0; i < 8; i++) {
		tmp2_bit[i]	 = *(ecc_data1 + 2) % 2;
		*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
	}

	for (i = 0; i < 8; i++) {
		comp0_bit[i]     = *ecc_data2 % 2;
		*ecc_data2       = *ecc_data2 / 2;
	}

	for (i = 0; i < 8; i++) {
		comp1_bit[i]     = *(ecc_data2 + 1) % 2;
		*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
	}

	for (i = 0; i < 8; i++) {
		comp2_bit[i]     = *(ecc_data2 + 2) % 2;
		*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
	}

	for (i = 0; i < 6; i++)
		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];

	for (i = 0; i < 8; i++)
		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];

	for (i = 0; i < 8; i++)
		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];

	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];

	for (i = 0; i < 24; i++)
		ecc_sum += ecc_bit[i];

	switch (ecc_sum) {
	case 0:
		/* Not reached because this function is not called if
		 *  ECC values are equal
		 */
		return 0;

	case 1:
		/* Uncorrectable error */
		pr_debug("ECC UNCORRECTED_ERROR 1\n");
		return -1;

	case 11:
		/* UN-Correctable error */
		pr_debug("ECC UNCORRECTED_ERROR B\n");
		return -1;

	case 12:
		/* Correctable error */
		find_byte = (ecc_bit[23] << 8) +
			    (ecc_bit[21] << 7) +
			    (ecc_bit[19] << 6) +
			    (ecc_bit[17] << 5) +
			    (ecc_bit[15] << 4) +
			    (ecc_bit[13] << 3) +
			    (ecc_bit[11] << 2) +
			    (ecc_bit[9]  << 1) +
			    ecc_bit[7];

		find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];

		pr_debug("Correcting single bit ECC error at offset: "
				"%d, bit: %d\n", find_byte, find_bit);

		page_data[find_byte] ^= (1 << find_bit);

		return 1;
	default:
		if (isEccFF) {
			if (ecc_data2[0] == 0 &&
			    ecc_data2[1] == 0 &&
			    ecc_data2[2] == 0)
				return 0;
		}
		pr_debug("UNCORRECTED_ERROR default\n");
		return -1;
	}
}

/**
 * omap_correct_data - Compares the ECC read with HW generated ECC
 * @mtd: MTD device structure
 * @dat: page data
 * @read_ecc: ecc read from nand flash
 * @calc_ecc: ecc read from HW ECC registers
 *
 * Compares the ecc read from nand spare area with ECC registers values
 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
 * detection and correction. If there are no errors, %0 is returned. If
 * there were errors and all of the errors were corrected, the number of
 * corrected errors is returned. If uncorrectable errors exist, %-1 is
 * returned.
 */
static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
				u_char *read_ecc, u_char *calc_ecc)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	int blockCnt = 0, i = 0, ret = 0;
	int stat = 0;

	/* Ex NAND_ECC_HW12_2048 */
	if ((info->nand.ecc.mode == NAND_ECC_HW) &&
			(info->nand.ecc.size  == 2048))
		blockCnt = 4;
	else
		blockCnt = 1;

	for (i = 0; i < blockCnt; i++) {
		if (memcmp(read_ecc, calc_ecc, 3) != 0) {
			ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
			if (ret < 0)
				return ret;
			/* keep track of the number of corrected errors */
			stat += ret;
		}
		read_ecc += 3;
		calc_ecc += 3;
		dat      += 512;
	}
	return stat;
}

/**
 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
 * @mtd: MTD device structure
 * @dat: The pointer to data on which ecc is computed
 * @ecc_code: The ecc_code buffer
 *
 * Using noninverted ECC can be considered ugly since writing a blank
 * page ie. padding will clear the ECC bytes. This is no problem as long
 * nobody is trying to write data on the seemingly unused page. Reading
 * an erased page will produce an ECC mismatch between generated and read
 * ECC bytes that has to be dealt with separately.
 */
static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
				u_char *ecc_code)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	u32 val;

	val = readl(info->reg.gpmc_ecc_config);
	if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
		return -EINVAL;

	/* read ecc result */
	val = readl(info->reg.gpmc_ecc1_result);
	*ecc_code++ = val;          /* P128e, ..., P1e */
	*ecc_code++ = val >> 16;    /* P128o, ..., P1o */
	/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
	*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);

	return 0;
}

/**
 * omap_enable_hwecc - This function enables the hardware ecc functionality
 * @mtd: MTD device structure
 * @mode: Read/Write mode
 */
static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	struct nand_chip *chip = mtd->priv;
	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
	u32 val;

	/* clear ecc and enable bits */
	val = ECCCLEAR | ECC1;
	writel(val, info->reg.gpmc_ecc_control);

	/* program ecc and result sizes */
	val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
			 ECC1RESULTSIZE);
	writel(val, info->reg.gpmc_ecc_size_config);

	switch (mode) {
	case NAND_ECC_READ:
	case NAND_ECC_WRITE:
		writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
		break;
	case NAND_ECC_READSYN:
		writel(ECCCLEAR, info->reg.gpmc_ecc_control);
		break;
	default:
		dev_info(&info->pdev->dev,
			"error: unrecognized Mode[%d]!\n", mode);
		break;
	}

	/* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
	val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
	writel(val, info->reg.gpmc_ecc_config);
}

/**
 * omap_wait - wait until the command is done
 * @mtd: MTD device structure
 * @chip: NAND Chip structure
 *
 * Wait function is called during Program and erase operations and
 * the way it is called from MTD layer, we should wait till the NAND
 * chip is ready after the programming/erase operation has completed.
 *
 * Erase can take up to 400ms and program up to 20ms according to
 * general NAND and SmartMedia specs
 */
static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct nand_chip *this = mtd->priv;
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	unsigned long timeo = jiffies;
	int status, state = this->state;

	if (state == FL_ERASING)
		timeo += msecs_to_jiffies(400);
	else
		timeo += msecs_to_jiffies(20);

	writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
	while (time_before(jiffies, timeo)) {
		status = readb(info->reg.gpmc_nand_data);
		if (status & NAND_STATUS_READY)
			break;
		cond_resched();
	}

	status = readb(info->reg.gpmc_nand_data);
	return status;
}

/**
 * omap_dev_ready - calls the platform specific dev_ready function
 * @mtd: MTD device structure
 */
static int omap_dev_ready(struct mtd_info *mtd)
{
	unsigned int val = 0;
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);

	val = readl(info->reg.gpmc_status);

	if ((val & 0x100) == 0x100) {
		return 1;
	} else {
		return 0;
	}
}

/**
 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
 * @mtd: MTD device structure
 * @mode: Read/Write mode
 *
 * When using BCH, sector size is hardcoded to 512 bytes.
 * Using wrapping mode 6 both for reading and writing if ELM module not uses
 * for error correction.
 * On writing,
 * eccsize0 = 0  (no additional protected byte in spare area)
 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
 */
static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
{
	unsigned int bch_type;
	unsigned int dev_width, nsectors;
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
						   mtd);
	enum omap_ecc ecc_opt = info->ecc_opt;
	struct nand_chip *chip = mtd->priv;
	u32 val, wr_mode;
	unsigned int ecc_size1, ecc_size0;

	/* GPMC configurations for calculating ECC */
	switch (ecc_opt) {
	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
		bch_type = 0;
		nsectors = 1;
		if (mode == NAND_ECC_READ) {
			wr_mode	  = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		} else {
			wr_mode   = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		}
		break;
	case OMAP_ECC_BCH4_CODE_HW:
		bch_type = 0;
		nsectors = chip->ecc.steps;
		if (mode == NAND_ECC_READ) {
			wr_mode	  = BCH_WRAPMODE_1;
			ecc_size0 = BCH4R_ECC_SIZE0;
			ecc_size1 = BCH4R_ECC_SIZE1;
		} else {
			wr_mode   = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		}
		break;
	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
		bch_type = 1;
		nsectors = 1;
		if (mode == NAND_ECC_READ) {
			wr_mode	  = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		} else {
			wr_mode   = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		}
		break;
	case OMAP_ECC_BCH8_CODE_HW:
		bch_type = 1;
		nsectors = chip->ecc.steps;
		if (mode == NAND_ECC_READ) {
			wr_mode	  = BCH_WRAPMODE_1;
			ecc_size0 = BCH8R_ECC_SIZE0;
			ecc_size1 = BCH8R_ECC_SIZE1;
		} else {
			wr_mode   = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		}
		break;
	case OMAP_ECC_BCH16_CODE_HW:
		bch_type = 0x2;
		nsectors = chip->ecc.steps;
		if (mode == NAND_ECC_READ) {
			wr_mode	  = 0x01;
			ecc_size0 = 52; /* ECC bits in nibbles per sector */
			ecc_size1 = 0;  /* non-ECC bits in nibbles per sector */
		} else {
			wr_mode	  = 0x01;
			ecc_size0 = 0;  /* extra bits in nibbles per sector */
			ecc_size1 = 52; /* OOB bits in nibbles per sector */
		}
		break;
	default:
		return;
	}

	writel(ECC1, info->reg.gpmc_ecc_control);

	/* Configure ecc size for BCH */
	val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
	writel(val, info->reg.gpmc_ecc_size_config);

	dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;

	/* BCH configuration */
	val = ((1                        << 16) | /* enable BCH */
	       (bch_type		 << 12) | /* BCH4/BCH8/BCH16 */
	       (wr_mode                  <<  8) | /* wrap mode */
	       (dev_width                <<  7) | /* bus width */
	       (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
	       (info->gpmc_cs            <<  1) | /* ECC CS */
	       (0x1));                            /* enable ECC */

	writel(val, info->reg.gpmc_ecc_config);

	/* Clear ecc and enable bits */
	writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
}

static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
				0x97, 0x79, 0xe5, 0x24, 0xb5};

/**
 * omap_calculate_ecc_bch - Generate bytes of ECC bytes
 * @mtd:	MTD device structure
 * @dat:	The pointer to data on which ecc is computed
 * @ecc_code:	The ecc_code buffer
 *
 * Support calculating of BCH4/8 ecc vectors for the page
 */
static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
					const u_char *dat, u_char *ecc_calc)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
						   mtd);
	int eccbytes	= info->nand.ecc.bytes;
	struct gpmc_nand_regs	*gpmc_regs = &info->reg;
	u8 *ecc_code;
	unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
	u32 val;
	int i, j;

	nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
	for (i = 0; i < nsectors; i++) {
		ecc_code = ecc_calc;
		switch (info->ecc_opt) {
		case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
		case OMAP_ECC_BCH8_CODE_HW:
			bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
			bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
			bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
			bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
			*ecc_code++ = (bch_val4 & 0xFF);
			*ecc_code++ = ((bch_val3 >> 24) & 0xFF);
			*ecc_code++ = ((bch_val3 >> 16) & 0xFF);
			*ecc_code++ = ((bch_val3 >> 8) & 0xFF);
			*ecc_code++ = (bch_val3 & 0xFF);
			*ecc_code++ = ((bch_val2 >> 24) & 0xFF);
			*ecc_code++ = ((bch_val2 >> 16) & 0xFF);
			*ecc_code++ = ((bch_val2 >> 8) & 0xFF);
			*ecc_code++ = (bch_val2 & 0xFF);
			*ecc_code++ = ((bch_val1 >> 24) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 16) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 8) & 0xFF);
			*ecc_code++ = (bch_val1 & 0xFF);
			break;
		case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
		case OMAP_ECC_BCH4_CODE_HW:
			bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
			bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
			*ecc_code++ = ((bch_val2 >> 12) & 0xFF);
			*ecc_code++ = ((bch_val2 >> 4) & 0xFF);
			*ecc_code++ = ((bch_val2 & 0xF) << 4) |
				((bch_val1 >> 28) & 0xF);
			*ecc_code++ = ((bch_val1 >> 20) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 12) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 4) & 0xFF);
			*ecc_code++ = ((bch_val1 & 0xF) << 4);
			break;
		case OMAP_ECC_BCH16_CODE_HW:
			val = readl(gpmc_regs->gpmc_bch_result6[i]);
			ecc_code[0]  = ((val >>  8) & 0xFF);
			ecc_code[1]  = ((val >>  0) & 0xFF);
			val = readl(gpmc_regs->gpmc_bch_result5[i]);
			ecc_code[2]  = ((val >> 24) & 0xFF);
			ecc_code[3]  = ((val >> 16) & 0xFF);
			ecc_code[4]  = ((val >>  8) & 0xFF);
			ecc_code[5]  = ((val >>  0) & 0xFF);
			val = readl(gpmc_regs->gpmc_bch_result4[i]);
			ecc_code[6]  = ((val >> 24) & 0xFF);
			ecc_code[7]  = ((val >> 16) & 0xFF);
			ecc_code[8]  = ((val >>  8) & 0xFF);
			ecc_code[9]  = ((val >>  0) & 0xFF);
			val = readl(gpmc_regs->gpmc_bch_result3[i]);
			ecc_code[10] = ((val >> 24) & 0xFF);
			ecc_code[11] = ((val >> 16) & 0xFF);
			ecc_code[12] = ((val >>  8) & 0xFF);
			ecc_code[13] = ((val >>  0) & 0xFF);
			val = readl(gpmc_regs->gpmc_bch_result2[i]);
			ecc_code[14] = ((val >> 24) & 0xFF);
			ecc_code[15] = ((val >> 16) & 0xFF);
			ecc_code[16] = ((val >>  8) & 0xFF);
			ecc_code[17] = ((val >>  0) & 0xFF);
			val = readl(gpmc_regs->gpmc_bch_result1[i]);
			ecc_code[18] = ((val >> 24) & 0xFF);
			ecc_code[19] = ((val >> 16) & 0xFF);
			ecc_code[20] = ((val >>  8) & 0xFF);
			ecc_code[21] = ((val >>  0) & 0xFF);
			val = readl(gpmc_regs->gpmc_bch_result0[i]);
			ecc_code[22] = ((val >> 24) & 0xFF);
			ecc_code[23] = ((val >> 16) & 0xFF);
			ecc_code[24] = ((val >>  8) & 0xFF);
			ecc_code[25] = ((val >>  0) & 0xFF);
			break;
		default:
			return -EINVAL;
		}

		/* ECC scheme specific syndrome customizations */
		switch (info->ecc_opt) {
		case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
			/* Add constant polynomial to remainder, so that
			 * ECC of blank pages results in 0x0 on reading back */
			for (j = 0; j < eccbytes; j++)
				ecc_calc[j] ^= bch4_polynomial[j];
			break;
		case OMAP_ECC_BCH4_CODE_HW:
			/* Set  8th ECC byte as 0x0 for ROM compatibility */
			ecc_calc[eccbytes - 1] = 0x0;
			break;
		case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
			/* Add constant polynomial to remainder, so that
			 * ECC of blank pages results in 0x0 on reading back */
			for (j = 0; j < eccbytes; j++)
				ecc_calc[j] ^= bch8_polynomial[j];
			break;
		case OMAP_ECC_BCH8_CODE_HW:
			/* Set 14th ECC byte as 0x0 for ROM compatibility */
			ecc_calc[eccbytes - 1] = 0x0;
			break;
		case OMAP_ECC_BCH16_CODE_HW:
			break;
		default:
			return -EINVAL;
		}

	ecc_calc += eccbytes;
	}

	return 0;
}

/**
 * erased_sector_bitflips - count bit flips
 * @data:	data sector buffer
 * @oob:	oob buffer
 * @info:	omap_nand_info
 *
 * Check the bit flips in erased page falls below correctable level.
 * If falls below, report the page as erased with correctable bit
 * flip, else report as uncorrectable page.
 */
static int erased_sector_bitflips(u_char *data, u_char *oob,
		struct omap_nand_info *info)
{
	int flip_bits = 0, i;

	for (i = 0; i < info->nand.ecc.size; i++) {
		flip_bits += hweight8(~data[i]);
		if (flip_bits > info->nand.ecc.strength)
			return 0;
	}

	for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
		flip_bits += hweight8(~oob[i]);
		if (flip_bits > info->nand.ecc.strength)
			return 0;
	}

	/*
	 * Bit flips falls in correctable level.
	 * Fill data area with 0xFF
	 */
	if (flip_bits) {
		memset(data, 0xFF, info->nand.ecc.size);
		memset(oob, 0xFF, info->nand.ecc.bytes);
	}

	return flip_bits;
}

/**
 * omap_elm_correct_data - corrects page data area in case error reported
 * @mtd:	MTD device structure
 * @data:	page data
 * @read_ecc:	ecc read from nand flash
 * @calc_ecc:	ecc read from HW ECC registers
 *
 * Calculated ecc vector reported as zero in case of non-error pages.
 * In case of non-zero ecc vector, first filter out erased-pages, and
 * then process data via ELM to detect bit-flips.
 */
static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
				u_char *read_ecc, u_char *calc_ecc)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
			mtd);
	struct nand_ecc_ctrl *ecc = &info->nand.ecc;
	int eccsteps = info->nand.ecc.steps;
	int i , j, stat = 0;
	int eccflag, actual_eccbytes;
	struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
	u_char *ecc_vec = calc_ecc;
	u_char *spare_ecc = read_ecc;
	u_char *erased_ecc_vec;
	u_char *buf;
	int bitflip_count;
	bool is_error_reported = false;
	u32 bit_pos, byte_pos, error_max, pos;
	int err;

	switch (info->ecc_opt) {
	case OMAP_ECC_BCH4_CODE_HW:
		/* omit  7th ECC byte reserved for ROM code compatibility */
		actual_eccbytes = ecc->bytes - 1;
		erased_ecc_vec = bch4_vector;
		break;
	case OMAP_ECC_BCH8_CODE_HW:
		/* omit 14th ECC byte reserved for ROM code compatibility */
		actual_eccbytes = ecc->bytes - 1;
		erased_ecc_vec = bch8_vector;
		break;
	case OMAP_ECC_BCH16_CODE_HW:
		actual_eccbytes = ecc->bytes;
		erased_ecc_vec = bch16_vector;
		break;
	default:
		dev_err(&info->pdev->dev, "invalid driver configuration\n");
		return -EINVAL;
	}

	/* Initialize elm error vector to zero */
	memset(err_vec, 0, sizeof(err_vec));

	for (i = 0; i < eccsteps ; i++) {
		eccflag = 0;	/* initialize eccflag */

		/*
		 * Check any error reported,
		 * In case of error, non zero ecc reported.
		 */
		for (j = 0; j < actual_eccbytes; j++) {
			if (calc_ecc[j] != 0) {
				eccflag = 1; /* non zero ecc, error present */
				break;
			}
		}

		if (eccflag == 1) {
			if (memcmp(calc_ecc, erased_ecc_vec,
						actual_eccbytes) == 0) {
				/*
				 * calc_ecc[] matches pattern for ECC(all 0xff)
				 * so this is definitely an erased-page
				 */
			} else {
				buf = &data[info->nand.ecc.size * i];
				/*
				 * count number of 0-bits in read_buf.
				 * This check can be removed once a similar
				 * check is introduced in generic NAND driver
				 */
				bitflip_count = erased_sector_bitflips(
						buf, read_ecc, info);
				if (bitflip_count) {
					/*
					 * number of 0-bits within ECC limits
					 * So this may be an erased-page
					 */
					stat += bitflip_count;
				} else {
					/*
					 * Too many 0-bits. It may be a
					 * - programmed-page, OR
					 * - erased-page with many bit-flips
					 * So this page requires check by ELM
					 */
					err_vec[i].error_reported = true;
					is_error_reported = true;
				}
			}
		}

		/* Update the ecc vector */
		calc_ecc += ecc->bytes;
		read_ecc += ecc->bytes;
	}

	/* Check if any error reported */
	if (!is_error_reported)
		return stat;

	/* Decode BCH error using ELM module */
	elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);

	err = 0;
	for (i = 0; i < eccsteps; i++) {
		if (err_vec[i].error_uncorrectable) {
			dev_err(&info->pdev->dev,
				"uncorrectable bit-flips found\n");
			err = -EBADMSG;
		} else if (err_vec[i].error_reported) {
			for (j = 0; j < err_vec[i].error_count; j++) {
				switch (info->ecc_opt) {
				case OMAP_ECC_BCH4_CODE_HW:
					/* Add 4 bits to take care of padding */
					pos = err_vec[i].error_loc[j] +
						BCH4_BIT_PAD;
					break;
				case OMAP_ECC_BCH8_CODE_HW:
				case OMAP_ECC_BCH16_CODE_HW:
					pos = err_vec[i].error_loc[j];
					break;
				default:
					return -EINVAL;
				}
				error_max = (ecc->size + actual_eccbytes) * 8;
				/* Calculate bit position of error */
				bit_pos = pos % 8;

				/* Calculate byte position of error */
				byte_pos = (error_max - pos - 1) / 8;

				if (pos < error_max) {
					if (byte_pos < 512) {
						pr_debug("bitflip@dat[%d]=%x\n",
						     byte_pos, data[byte_pos]);
						data[byte_pos] ^= 1 << bit_pos;
					} else {
						pr_debug("bitflip@oob[%d]=%x\n",
							(byte_pos - 512),
						     spare_ecc[byte_pos - 512]);
						spare_ecc[byte_pos - 512] ^=
							1 << bit_pos;
					}
				} else {
					dev_err(&info->pdev->dev,
						"invalid bit-flip @ %d:%d\n",
						byte_pos, bit_pos);
					err = -EBADMSG;
				}
			}
		}

		/* Update number of correctable errors */
		stat += err_vec[i].error_count;

		/* Update page data with sector size */
		data += ecc->size;
		spare_ecc += ecc->bytes;
	}

	return (err) ? err : stat;
}

/**
 * omap_write_page_bch - BCH ecc based write page function for entire page
 * @mtd:		mtd info structure
 * @chip:		nand chip info structure
 * @buf:		data buffer
 * @oob_required:	must write chip->oob_poi to OOB
 *
 * Custom write page method evolved to support multi sector writing in one shot
 */
static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
				  const uint8_t *buf, int oob_required)
{
	int i;
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint32_t *eccpos = chip->ecc.layout->eccpos;

	/* Enable GPMC ecc engine */
	chip->ecc.hwctl(mtd, NAND_ECC_WRITE);

	/* Write data */
	chip->write_buf(mtd, buf, mtd->writesize);

	/* Update ecc vector from GPMC result registers */
	chip->ecc.calculate(mtd, buf, &ecc_calc[0]);

	for (i = 0; i < chip->ecc.total; i++)
		chip->oob_poi[eccpos[i]] = ecc_calc[i];

	/* Write ecc vector to OOB area */
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
	return 0;
}

/**
 * omap_read_page_bch - BCH ecc based page read function for entire page
 * @mtd:		mtd info structure
 * @chip:		nand chip info structure
 * @buf:		buffer to store read data
 * @oob_required:	caller requires OOB data read to chip->oob_poi
 * @page:		page number to read
 *
 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
 * used for error correction.
 * Custom method evolved to support ELM error correction & multi sector
 * reading. On reading page data area is read along with OOB data with
 * ecc engine enabled. ecc vector updated after read of OOB data.
 * For non error pages ecc vector reported as zero.
 */
static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int oob_required, int page)
{
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint8_t *ecc_code = chip->buffers->ecccode;
	uint32_t *eccpos = chip->ecc.layout->eccpos;
	uint8_t *oob = &chip->oob_poi[eccpos[0]];
	uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0];
	int stat;
	unsigned int max_bitflips = 0;

	/* Enable GPMC ecc engine */
	chip->ecc.hwctl(mtd, NAND_ECC_READ);

	/* Read data */
	chip->read_buf(mtd, buf, mtd->writesize);

	/* Read oob bytes */
	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
	chip->read_buf(mtd, oob, chip->ecc.total);

	/* Calculate ecc bytes */
	chip->ecc.calculate(mtd, buf, ecc_calc);

	memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total);

	stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);

	if (stat < 0) {
		mtd->ecc_stats.failed++;
	} else {
		mtd->ecc_stats.corrected += stat;
		max_bitflips = max_t(unsigned int, max_bitflips, stat);
	}

	return max_bitflips;
}

/**
 * is_elm_present - checks for presence of ELM module by scanning DT nodes
 * @omap_nand_info: NAND device structure containing platform data
 */
static bool is_elm_present(struct omap_nand_info *info,
			   struct device_node *elm_node)
{
	struct platform_device *pdev;

	/* check whether elm-id is passed via DT */
	if (!elm_node) {
		dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
		return false;
	}
	pdev = of_find_device_by_node(elm_node);
	/* check whether ELM device is registered */
	if (!pdev) {
		dev_err(&info->pdev->dev, "ELM device not found\n");
		return false;
	}
	/* ELM module available, now configure it */
	info->elm_dev = &pdev->dev;
	return true;
}

static bool omap2_nand_ecc_check(struct omap_nand_info *info,
				 struct omap_nand_platform_data	*pdata)
{
	bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;

	switch (info->ecc_opt) {
	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
		ecc_needs_omap_bch = false;
		ecc_needs_bch = true;
		ecc_needs_elm = false;
		break;
	case OMAP_ECC_BCH4_CODE_HW:
	case OMAP_ECC_BCH8_CODE_HW:
	case OMAP_ECC_BCH16_CODE_HW:
		ecc_needs_omap_bch = true;
		ecc_needs_bch = false;
		ecc_needs_elm = true;
		break;
	default:
		ecc_needs_omap_bch = false;
		ecc_needs_bch = false;
		ecc_needs_elm = false;
		break;
	}

	if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
		dev_err(&info->pdev->dev,
			"CONFIG_MTD_NAND_ECC_BCH not enabled\n");
		return false;
	}
	if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
		dev_err(&info->pdev->dev,
			"CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
		return false;
	}
	if (ecc_needs_elm && !is_elm_present(info, pdata->elm_of_node)) {
		dev_err(&info->pdev->dev, "ELM not available\n");
		return false;
	}

	return true;
}

static int omap_nand_probe(struct platform_device *pdev)
{
	struct omap_nand_info		*info;
	struct omap_nand_platform_data	*pdata;
	struct mtd_info			*mtd;
	struct nand_chip		*nand_chip;
	struct nand_ecclayout		*ecclayout;
	int				err;
	int				i;
	dma_cap_mask_t			mask;
	unsigned			sig;
	unsigned			oob_index;
	struct resource			*res;
	struct mtd_part_parser_data	ppdata = {};

	pdata = dev_get_platdata(&pdev->dev);
	if (pdata == NULL) {
		dev_err(&pdev->dev, "platform data missing\n");
		return -ENODEV;
	}

	info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
				GFP_KERNEL);
	if (!info)
		return -ENOMEM;

	platform_set_drvdata(pdev, info);

	info->pdev		= pdev;
	info->gpmc_cs		= pdata->cs;
	info->reg		= pdata->reg;
	info->of_node		= pdata->of_node;
	info->ecc_opt		= pdata->ecc_opt;
	mtd			= &info->mtd;
	mtd->priv		= &info->nand;
	mtd->name		= dev_name(&pdev->dev);
	mtd->owner		= THIS_MODULE;
	nand_chip		= &info->nand;
	nand_chip->ecc.priv	= NULL;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(nand_chip->IO_ADDR_R))
		return PTR_ERR(nand_chip->IO_ADDR_R);

	info->phys_base = res->start;

	nand_chip->controller = &omap_gpmc_controller;

	nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
	nand_chip->cmd_ctrl  = omap_hwcontrol;

	/*
	 * If RDY/BSY line is connected to OMAP then use the omap ready
	 * function and the generic nand_wait function which reads the status
	 * register after monitoring the RDY/BSY line. Otherwise use a standard
	 * chip delay which is slightly more than tR (AC Timing) of the NAND
	 * device and read status register until you get a failure or success
	 */
	if (pdata->dev_ready) {
		nand_chip->dev_ready = omap_dev_ready;
		nand_chip->chip_delay = 0;
	} else {
		nand_chip->waitfunc = omap_wait;
		nand_chip->chip_delay = 50;
	}

	if (pdata->flash_bbt)
		nand_chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
	else
		nand_chip->options |= NAND_SKIP_BBTSCAN;

	/* scan NAND device connected to chip controller */
	nand_chip->options |= pdata->devsize & NAND_BUSWIDTH_16;
	if (nand_scan_ident(mtd, 1, NULL)) {
		dev_err(&info->pdev->dev, "scan failed, may be bus-width mismatch\n");
		err = -ENXIO;
		goto return_error;
	}

	/* re-populate low-level callbacks based on xfer modes */
	switch (pdata->xfer_type) {
	case NAND_OMAP_PREFETCH_POLLED:
		nand_chip->read_buf   = omap_read_buf_pref;
		nand_chip->write_buf  = omap_write_buf_pref;
		break;

	case NAND_OMAP_POLLED:
		/* Use nand_base defaults for {read,write}_buf */
		break;

	case NAND_OMAP_PREFETCH_DMA:
		dma_cap_zero(mask);
		dma_cap_set(DMA_SLAVE, mask);
		sig = OMAP24XX_DMA_GPMC;
		info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
		if (!info->dma) {
			dev_err(&pdev->dev, "DMA engine request failed\n");
			err = -ENXIO;
			goto return_error;
		} else {
			struct dma_slave_config cfg;

			memset(&cfg, 0, sizeof(cfg));
			cfg.src_addr = info->phys_base;
			cfg.dst_addr = info->phys_base;
			cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
			cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
			cfg.src_maxburst = 16;
			cfg.dst_maxburst = 16;
			err = dmaengine_slave_config(info->dma, &cfg);
			if (err) {
				dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
					err);
				goto return_error;
			}
			nand_chip->read_buf   = omap_read_buf_dma_pref;
			nand_chip->write_buf  = omap_write_buf_dma_pref;
		}
		break;

	case NAND_OMAP_PREFETCH_IRQ:
		info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
		if (info->gpmc_irq_fifo <= 0) {
			dev_err(&pdev->dev, "error getting fifo irq\n");
			err = -ENODEV;
			goto return_error;
		}
		err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
					omap_nand_irq, IRQF_SHARED,
					"gpmc-nand-fifo", info);
		if (err) {
			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
						info->gpmc_irq_fifo, err);
			info->gpmc_irq_fifo = 0;
			goto return_error;
		}

		info->gpmc_irq_count = platform_get_irq(pdev, 1);
		if (info->gpmc_irq_count <= 0) {
			dev_err(&pdev->dev, "error getting count irq\n");
			err = -ENODEV;
			goto return_error;
		}
		err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
					omap_nand_irq, IRQF_SHARED,
					"gpmc-nand-count", info);
		if (err) {
			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
						info->gpmc_irq_count, err);
			info->gpmc_irq_count = 0;
			goto return_error;
		}

		nand_chip->read_buf  = omap_read_buf_irq_pref;
		nand_chip->write_buf = omap_write_buf_irq_pref;

		break;

	default:
		dev_err(&pdev->dev,
			"xfer_type(%d) not supported!\n", pdata->xfer_type);
		err = -EINVAL;
		goto return_error;
	}

	if (!omap2_nand_ecc_check(info, pdata)) {
		err = -EINVAL;
		goto return_error;
	}

	/* populate MTD interface based on ECC scheme */
	ecclayout		= &info->oobinfo;
	switch (info->ecc_opt) {
	case OMAP_ECC_HAM1_CODE_SW:
		nand_chip->ecc.mode = NAND_ECC_SOFT;
		break;

	case OMAP_ECC_HAM1_CODE_HW:
		pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
		nand_chip->ecc.mode             = NAND_ECC_HW;
		nand_chip->ecc.bytes            = 3;
		nand_chip->ecc.size             = 512;
		nand_chip->ecc.strength         = 1;
		nand_chip->ecc.calculate        = omap_calculate_ecc;
		nand_chip->ecc.hwctl            = omap_enable_hwecc;
		nand_chip->ecc.correct          = omap_correct_data;
		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
		if (nand_chip->options & NAND_BUSWIDTH_16)
			oob_index		= BADBLOCK_MARKER_LENGTH;
		else
			oob_index		= 1;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
			ecclayout->eccpos[i]	= oob_index;
		/* no reserved-marker in ecclayout for this ecc-scheme */
		ecclayout->oobfree->offset	=
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
		break;

	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		nand_chip->ecc.bytes		= 7;
		nand_chip->ecc.strength		= 4;
		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
		nand_chip->ecc.correct		= nand_bch_correct_data;
		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
		oob_index			= BADBLOCK_MARKER_LENGTH;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
			ecclayout->eccpos[i] = oob_index;
			if (((i + 1) % nand_chip->ecc.bytes) == 0)
				oob_index++;
		}
		/* include reserved-marker in ecclayout->oobfree calculation */
		ecclayout->oobfree->offset	= 1 +
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
		/* software bch library is used for locating errors */
		nand_chip->ecc.priv		= nand_bch_init(mtd,
							nand_chip->ecc.size,
							nand_chip->ecc.bytes,
							&ecclayout);
		if (!nand_chip->ecc.priv) {
			dev_err(&info->pdev->dev, "unable to use BCH library\n");
			err = -EINVAL;
			goto return_error;
		}
		break;

	case OMAP_ECC_BCH4_CODE_HW:
		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		/* 14th bit is kept reserved for ROM-code compatibility */
		nand_chip->ecc.bytes		= 7 + 1;
		nand_chip->ecc.strength		= 4;
		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
		nand_chip->ecc.correct		= omap_elm_correct_data;
		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
		nand_chip->ecc.read_page	= omap_read_page_bch;
		nand_chip->ecc.write_page	= omap_write_page_bch;
		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
		oob_index			= BADBLOCK_MARKER_LENGTH;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
			ecclayout->eccpos[i]	= oob_index;
		/* reserved marker already included in ecclayout->eccbytes */
		ecclayout->oobfree->offset	=
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;

		err = elm_config(info->elm_dev, BCH4_ECC,
				 info->mtd.writesize / nand_chip->ecc.size,
				 nand_chip->ecc.size, nand_chip->ecc.bytes);
		if (err < 0)
			goto return_error;
		break;

	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		nand_chip->ecc.bytes		= 13;
		nand_chip->ecc.strength		= 8;
		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
		nand_chip->ecc.correct		= nand_bch_correct_data;
		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
		oob_index			= BADBLOCK_MARKER_LENGTH;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
			ecclayout->eccpos[i] = oob_index;
			if (((i + 1) % nand_chip->ecc.bytes) == 0)
				oob_index++;
		}
		/* include reserved-marker in ecclayout->oobfree calculation */
		ecclayout->oobfree->offset	= 1 +
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
		/* software bch library is used for locating errors */
		nand_chip->ecc.priv		= nand_bch_init(mtd,
							nand_chip->ecc.size,
							nand_chip->ecc.bytes,
							&ecclayout);
		if (!nand_chip->ecc.priv) {
			dev_err(&info->pdev->dev, "unable to use BCH library\n");
			err = -EINVAL;
			goto return_error;
		}
		break;

	case OMAP_ECC_BCH8_CODE_HW:
		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		/* 14th bit is kept reserved for ROM-code compatibility */
		nand_chip->ecc.bytes		= 13 + 1;
		nand_chip->ecc.strength		= 8;
		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
		nand_chip->ecc.correct		= omap_elm_correct_data;
		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
		nand_chip->ecc.read_page	= omap_read_page_bch;
		nand_chip->ecc.write_page	= omap_write_page_bch;

		err = elm_config(info->elm_dev, BCH8_ECC,
				 info->mtd.writesize / nand_chip->ecc.size,
				 nand_chip->ecc.size, nand_chip->ecc.bytes);
		if (err < 0)
			goto return_error;

		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
		oob_index			= BADBLOCK_MARKER_LENGTH;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
			ecclayout->eccpos[i]	= oob_index;
		/* reserved marker already included in ecclayout->eccbytes */
		ecclayout->oobfree->offset	=
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
		break;

	case OMAP_ECC_BCH16_CODE_HW:
		pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		nand_chip->ecc.bytes		= 26;
		nand_chip->ecc.strength		= 16;
		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
		nand_chip->ecc.correct		= omap_elm_correct_data;
		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
		nand_chip->ecc.read_page	= omap_read_page_bch;
		nand_chip->ecc.write_page	= omap_write_page_bch;

		err = elm_config(info->elm_dev, BCH16_ECC,
				 info->mtd.writesize / nand_chip->ecc.size,
				 nand_chip->ecc.size, nand_chip->ecc.bytes);
		if (err < 0)
			goto return_error;

		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
		oob_index			= BADBLOCK_MARKER_LENGTH;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
			ecclayout->eccpos[i]	= oob_index;
		/* reserved marker already included in ecclayout->eccbytes */
		ecclayout->oobfree->offset	=
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
		break;
	default:
		dev_err(&info->pdev->dev, "invalid or unsupported ECC scheme\n");
		err = -EINVAL;
		goto return_error;
	}

	if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW)
		goto scan_tail;

	/* all OOB bytes from oobfree->offset till end off OOB are free */
	ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
	/* check if NAND device's OOB is enough to store ECC signatures */
	if (mtd->oobsize < (ecclayout->eccbytes + BADBLOCK_MARKER_LENGTH)) {
		dev_err(&info->pdev->dev,
			"not enough OOB bytes required = %d, available=%d\n",
			ecclayout->eccbytes, mtd->oobsize);
		err = -EINVAL;
		goto return_error;
	}
	nand_chip->ecc.layout = ecclayout;

scan_tail:
	/* second phase scan */
	if (nand_scan_tail(mtd)) {
		err = -ENXIO;
		goto return_error;
	}

	ppdata.of_node = pdata->of_node;
	mtd_device_parse_register(mtd, NULL, &ppdata, pdata->parts,
				  pdata->nr_parts);

	platform_set_drvdata(pdev, mtd);

	return 0;

return_error:
	if (info->dma)
		dma_release_channel(info->dma);
	if (nand_chip->ecc.priv) {
		nand_bch_free(nand_chip->ecc.priv);
		nand_chip->ecc.priv = NULL;
	}
	return err;
}

static int omap_nand_remove(struct platform_device *pdev)
{
	struct mtd_info *mtd = platform_get_drvdata(pdev);
	struct nand_chip *nand_chip = mtd->priv;
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	if (nand_chip->ecc.priv) {
		nand_bch_free(nand_chip->ecc.priv);
		nand_chip->ecc.priv = NULL;
	}
	if (info->dma)
		dma_release_channel(info->dma);
	nand_release(mtd);
	return 0;
}

static struct platform_driver omap_nand_driver = {
	.probe		= omap_nand_probe,
	.remove		= omap_nand_remove,
	.driver		= {
		.name	= DRIVER_NAME,
	},
};

module_platform_driver(omap_nand_driver);

MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");