kprobes.c 13.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
/*
 * arch/tile/kernel/kprobes.c
 * Kprobes on TILE-Gx
 *
 * Some portions copied from the MIPS version.
 *
 * Copyright (C) IBM Corporation, 2002, 2004
 * Copyright 2006 Sony Corp.
 * Copyright 2010 Cavium Networks
 *
 * Copyright 2012 Tilera Corporation. All Rights Reserved.
 *
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation, version 2.
 *
 *   This program is distributed in the hope that it will be useful, but
 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *   NON INFRINGEMENT.  See the GNU General Public License for
 *   more details.
 */

#include <linux/kprobes.h>
#include <linux/kdebug.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <asm/cacheflush.h>

#include <arch/opcode.h>

DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);

tile_bundle_bits breakpoint_insn = TILEGX_BPT_BUNDLE;
tile_bundle_bits breakpoint2_insn = TILEGX_BPT_BUNDLE | DIE_SSTEPBP;

/*
 * Check whether instruction is branch or jump, or if executing it
 * has different results depending on where it is executed (e.g. lnk).
 */
static int __kprobes insn_has_control(kprobe_opcode_t insn)
{
	if (get_Mode(insn) != 0) {   /* Y-format bundle */
		if (get_Opcode_Y1(insn) != RRR_1_OPCODE_Y1 ||
		    get_RRROpcodeExtension_Y1(insn) != UNARY_RRR_1_OPCODE_Y1)
			return 0;

		switch (get_UnaryOpcodeExtension_Y1(insn)) {
		case JALRP_UNARY_OPCODE_Y1:
		case JALR_UNARY_OPCODE_Y1:
		case JRP_UNARY_OPCODE_Y1:
		case JR_UNARY_OPCODE_Y1:
		case LNK_UNARY_OPCODE_Y1:
			return 1;
		default:
			return 0;
		}
	}

	switch (get_Opcode_X1(insn)) {
	case BRANCH_OPCODE_X1:	/* branch instructions */
	case JUMP_OPCODE_X1:	/* jump instructions: j and jal */
		return 1;

	case RRR_0_OPCODE_X1:   /* other jump instructions */
		if (get_RRROpcodeExtension_X1(insn) != UNARY_RRR_0_OPCODE_X1)
			return 0;
		switch (get_UnaryOpcodeExtension_X1(insn)) {
		case JALRP_UNARY_OPCODE_X1:
		case JALR_UNARY_OPCODE_X1:
		case JRP_UNARY_OPCODE_X1:
		case JR_UNARY_OPCODE_X1:
		case LNK_UNARY_OPCODE_X1:
			return 1;
		default:
			return 0;
		}
	default:
		return 0;
	}
}

int __kprobes arch_prepare_kprobe(struct kprobe *p)
{
	unsigned long addr = (unsigned long)p->addr;

	if (addr & (sizeof(kprobe_opcode_t) - 1))
		return -EINVAL;

	if (insn_has_control(*p->addr)) {
		pr_notice("Kprobes for control instructions are not "
			  "supported\n");
		return -EINVAL;
	}

	/* insn: must be on special executable page on tile. */
	p->ainsn.insn = get_insn_slot();
	if (!p->ainsn.insn)
		return -ENOMEM;

	/*
	 * In the kprobe->ainsn.insn[] array we store the original
	 * instruction at index zero and a break trap instruction at
	 * index one.
	 */
	memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
	p->ainsn.insn[1] = breakpoint2_insn;
	p->opcode = *p->addr;

	return 0;
}

void __kprobes arch_arm_kprobe(struct kprobe *p)
{
	unsigned long addr_wr;

	/* Operate on writable kernel text mapping. */
	addr_wr = (unsigned long)p->addr - MEM_SV_START + PAGE_OFFSET;

	if (probe_kernel_write((void *)addr_wr, &breakpoint_insn,
		sizeof(breakpoint_insn)))
		pr_err("%s: failed to enable kprobe\n", __func__);

	smp_wmb();
	flush_insn_slot(p);
}

void __kprobes arch_disarm_kprobe(struct kprobe *kp)
{
	unsigned long addr_wr;

	/* Operate on writable kernel text mapping. */
	addr_wr = (unsigned long)kp->addr - MEM_SV_START + PAGE_OFFSET;

	if (probe_kernel_write((void *)addr_wr, &kp->opcode,
		sizeof(kp->opcode)))
		pr_err("%s: failed to enable kprobe\n", __func__);

	smp_wmb();
	flush_insn_slot(kp);
}

void __kprobes arch_remove_kprobe(struct kprobe *p)
{
	if (p->ainsn.insn) {
		free_insn_slot(p->ainsn.insn, 0);
		p->ainsn.insn = NULL;
	}
}

static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
{
	kcb->prev_kprobe.kp = kprobe_running();
	kcb->prev_kprobe.status = kcb->kprobe_status;
	kcb->prev_kprobe.saved_pc = kcb->kprobe_saved_pc;
}

static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
{
	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
	kcb->kprobe_status = kcb->prev_kprobe.status;
	kcb->kprobe_saved_pc = kcb->prev_kprobe.saved_pc;
}

static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
			struct kprobe_ctlblk *kcb)
{
	__this_cpu_write(current_kprobe, p);
	kcb->kprobe_saved_pc = regs->pc;
}

static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
{
	/* Single step inline if the instruction is a break. */
	if (p->opcode == breakpoint_insn ||
	    p->opcode == breakpoint2_insn)
		regs->pc = (unsigned long)p->addr;
	else
		regs->pc = (unsigned long)&p->ainsn.insn[0];
}

static int __kprobes kprobe_handler(struct pt_regs *regs)
{
	struct kprobe *p;
	int ret = 0;
	kprobe_opcode_t *addr;
	struct kprobe_ctlblk *kcb;

	addr = (kprobe_opcode_t *)regs->pc;

	/*
	 * We don't want to be preempted for the entire
	 * duration of kprobe processing.
	 */
	preempt_disable();
	kcb = get_kprobe_ctlblk();

	/* Check we're not actually recursing. */
	if (kprobe_running()) {
		p = get_kprobe(addr);
		if (p) {
			if (kcb->kprobe_status == KPROBE_HIT_SS &&
			    p->ainsn.insn[0] == breakpoint_insn) {
				goto no_kprobe;
			}
			/*
			 * We have reentered the kprobe_handler(), since
			 * another probe was hit while within the handler.
			 * We here save the original kprobes variables and
			 * just single step on the instruction of the new probe
			 * without calling any user handlers.
			 */
			save_previous_kprobe(kcb);
			set_current_kprobe(p, regs, kcb);
			kprobes_inc_nmissed_count(p);
			prepare_singlestep(p, regs);
			kcb->kprobe_status = KPROBE_REENTER;
			return 1;
		} else {
			if (*addr != breakpoint_insn) {
				/*
				 * The breakpoint instruction was removed by
				 * another cpu right after we hit, no further
				 * handling of this interrupt is appropriate.
				 */
				ret = 1;
				goto no_kprobe;
			}
			p = __this_cpu_read(current_kprobe);
			if (p->break_handler && p->break_handler(p, regs))
				goto ss_probe;
		}
		goto no_kprobe;
	}

	p = get_kprobe(addr);
	if (!p) {
		if (*addr != breakpoint_insn) {
			/*
			 * The breakpoint instruction was removed right
			 * after we hit it.  Another cpu has removed
			 * either a probepoint or a debugger breakpoint
			 * at this address.  In either case, no further
			 * handling of this interrupt is appropriate.
			 */
			ret = 1;
		}
		/* Not one of ours: let kernel handle it. */
		goto no_kprobe;
	}

	set_current_kprobe(p, regs, kcb);
	kcb->kprobe_status = KPROBE_HIT_ACTIVE;

	if (p->pre_handler && p->pre_handler(p, regs)) {
		/* Handler has already set things up, so skip ss setup. */
		return 1;
	}

ss_probe:
	prepare_singlestep(p, regs);
	kcb->kprobe_status = KPROBE_HIT_SS;
	return 1;

no_kprobe:
	preempt_enable_no_resched();
	return ret;
}

/*
 * Called after single-stepping.  p->addr is the address of the
 * instruction that has been replaced by the breakpoint. To avoid the
 * SMP problems that can occur when we temporarily put back the
 * original opcode to single-step, we single-stepped a copy of the
 * instruction.  The address of this copy is p->ainsn.insn.
 *
 * This function prepares to return from the post-single-step
 * breakpoint trap.
 */
static void __kprobes resume_execution(struct kprobe *p,
				       struct pt_regs *regs,
				       struct kprobe_ctlblk *kcb)
{
	unsigned long orig_pc = kcb->kprobe_saved_pc;
	regs->pc = orig_pc + 8;
}

static inline int post_kprobe_handler(struct pt_regs *regs)
{
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	if (!cur)
		return 0;

	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
		kcb->kprobe_status = KPROBE_HIT_SSDONE;
		cur->post_handler(cur, regs, 0);
	}

	resume_execution(cur, regs, kcb);

	/* Restore back the original saved kprobes variables and continue. */
	if (kcb->kprobe_status == KPROBE_REENTER) {
		restore_previous_kprobe(kcb);
		goto out;
	}
	reset_current_kprobe();
out:
	preempt_enable_no_resched();

	return 1;
}

static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
{
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
		return 1;

	if (kcb->kprobe_status & KPROBE_HIT_SS) {
		/*
		 * We are here because the instruction being single
		 * stepped caused a page fault. We reset the current
		 * kprobe and the ip points back to the probe address
		 * and allow the page fault handler to continue as a
		 * normal page fault.
		 */
		resume_execution(cur, regs, kcb);
		reset_current_kprobe();
		preempt_enable_no_resched();
	}
	return 0;
}

/*
 * Wrapper routine for handling exceptions.
 */
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
				       unsigned long val, void *data)
{
	struct die_args *args = (struct die_args *)data;
	int ret = NOTIFY_DONE;

	switch (val) {
	case DIE_BREAK:
		if (kprobe_handler(args->regs))
			ret = NOTIFY_STOP;
		break;
	case DIE_SSTEPBP:
		if (post_kprobe_handler(args->regs))
			ret = NOTIFY_STOP;
		break;
	case DIE_PAGE_FAULT:
		/* kprobe_running() needs smp_processor_id(). */
		preempt_disable();

		if (kprobe_running()
		    && kprobe_fault_handler(args->regs, args->trapnr))
			ret = NOTIFY_STOP;
		preempt_enable();
		break;
	default:
		break;
	}
	return ret;
}

int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
	struct jprobe *jp = container_of(p, struct jprobe, kp);
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	kcb->jprobe_saved_regs = *regs;
	kcb->jprobe_saved_sp = regs->sp;

	memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
	       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));

	regs->pc = (unsigned long)(jp->entry);

	return 1;
}

/* Defined in the inline asm below. */
void jprobe_return_end(void);

void __kprobes jprobe_return(void)
{
	asm volatile(
		"bpt\n\t"
		".globl jprobe_return_end\n"
		"jprobe_return_end:\n");
}

int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
{
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	if (regs->pc >= (unsigned long)jprobe_return &&
	    regs->pc <= (unsigned long)jprobe_return_end) {
		*regs = kcb->jprobe_saved_regs;
		memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
		       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
		preempt_enable_no_resched();

		return 1;
	}
	return 0;
}

/*
 * Function return probe trampoline:
 * - init_kprobes() establishes a probepoint here
 * - When the probed function returns, this probe causes the
 *   handlers to fire
 */
static void __used kretprobe_trampoline_holder(void)
{
	asm volatile(
		"nop\n\t"
		".global kretprobe_trampoline\n"
		"kretprobe_trampoline:\n\t"
		"nop\n\t"
		: : : "memory");
}

void kretprobe_trampoline(void);

void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
				      struct pt_regs *regs)
{
	ri->ret_addr = (kprobe_opcode_t *) regs->lr;

	/* Replace the return addr with trampoline addr */
	regs->lr = (unsigned long)kretprobe_trampoline;
}

/*
 * Called when the probe at kretprobe trampoline is hit.
 */
static int __kprobes trampoline_probe_handler(struct kprobe *p,
						struct pt_regs *regs)
{
	struct kretprobe_instance *ri = NULL;
	struct hlist_head *head, empty_rp;
	struct hlist_node *tmp;
	unsigned long flags, orig_ret_address = 0;
	unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;

	INIT_HLIST_HEAD(&empty_rp);
	kretprobe_hash_lock(current, &head, &flags);

	/*
	 * It is possible to have multiple instances associated with a given
	 * task either because multiple functions in the call path have
	 * a return probe installed on them, and/or more than one return
	 * return probe was registered for a target function.
	 *
	 * We can handle this because:
	 *     - instances are always inserted at the head of the list
	 *     - when multiple return probes are registered for the same
	 *       function, the first instance's ret_addr will point to the
	 *       real return address, and all the rest will point to
	 *       kretprobe_trampoline
	 */
	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
		if (ri->task != current)
			/* another task is sharing our hash bucket */
			continue;

		if (ri->rp && ri->rp->handler)
			ri->rp->handler(ri, regs);

		orig_ret_address = (unsigned long)ri->ret_addr;
		recycle_rp_inst(ri, &empty_rp);

		if (orig_ret_address != trampoline_address) {
			/*
			 * This is the real return address. Any other
			 * instances associated with this task are for
			 * other calls deeper on the call stack
			 */
			break;
		}
	}

	kretprobe_assert(ri, orig_ret_address, trampoline_address);
	instruction_pointer(regs) = orig_ret_address;

	reset_current_kprobe();
	kretprobe_hash_unlock(current, &flags);
	preempt_enable_no_resched();

	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
		hlist_del(&ri->hlist);
		kfree(ri);
	}
	/*
	 * By returning a non-zero value, we are telling
	 * kprobe_handler() that we don't want the post_handler
	 * to run (and have re-enabled preemption)
	 */
	return 1;
}

int __kprobes arch_trampoline_kprobe(struct kprobe *p)
{
	if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
		return 1;

	return 0;
}

static struct kprobe trampoline_p = {
	.addr = (kprobe_opcode_t *)kretprobe_trampoline,
	.pre_handler = trampoline_probe_handler
};

int __init arch_init_kprobes(void)
{
	register_kprobe(&trampoline_p);
	return 0;
}