6pack.c 24.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
/*
 * 6pack.c	This module implements the 6pack protocol for kernel-based
 *		devices like TTY. It interfaces between a raw TTY and the
 *		kernel's AX.25 protocol layers.
 *
 * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
 *              Ralf Baechle DL5RB <ralf@linux-mips.org>
 *
 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
 *
 *		Laurence Culhane, <loz@holmes.demon.co.uk>
 *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
 */

#include <linux/module.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <linux/bitops.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/in.h>
#include <linux/tty.h>
#include <linux/errno.h>
#include <linux/netdevice.h>
#include <linux/timer.h>
#include <net/ax25.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/spinlock.h>
#include <linux/if_arp.h>
#include <linux/init.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/semaphore.h>
#include <asm/atomic.h>

#define SIXPACK_VERSION    "Revision: 0.3.0"

/* sixpack priority commands */
#define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
#define SIXP_TX_URUN		0x48	/* transmit overrun */
#define SIXP_RX_ORUN		0x50	/* receive overrun */
#define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */

#define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */

/* masks to get certain bits out of the status bytes sent by the TNC */

#define SIXP_CMD_MASK		0xC0
#define SIXP_CHN_MASK		0x07
#define SIXP_PRIO_CMD_MASK	0x80
#define SIXP_STD_CMD_MASK	0x40
#define SIXP_PRIO_DATA_MASK	0x38
#define SIXP_TX_MASK		0x20
#define SIXP_RX_MASK		0x10
#define SIXP_RX_DCD_MASK	0x18
#define SIXP_LEDS_ON		0x78
#define SIXP_LEDS_OFF		0x60
#define SIXP_CON		0x08
#define SIXP_STA		0x10

#define SIXP_FOUND_TNC		0xe9
#define SIXP_CON_ON		0x68
#define SIXP_DCD_MASK		0x08
#define SIXP_DAMA_OFF		0

/* default level 2 parameters */
#define SIXP_TXDELAY			(HZ/4)	/* in 1 s */
#define SIXP_PERSIST			50	/* in 256ths */
#define SIXP_SLOTTIME			(HZ/10)	/* in 1 s */
#define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
#define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */

/* 6pack configuration. */
#define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
#define SIXP_MTU			256	/* Default MTU */

enum sixpack_flags {
	SIXPF_ERROR,	/* Parity, etc. error	*/
};

struct sixpack {
	/* Various fields. */
	struct tty_struct	*tty;		/* ptr to TTY structure	*/
	struct net_device	*dev;		/* easy for intr handling  */

	/* These are pointers to the malloc()ed frame buffers. */
	unsigned char		*rbuff;		/* receiver buffer	*/
	int			rcount;         /* received chars counter  */
	unsigned char		*xbuff;		/* transmitter buffer	*/
	unsigned char		*xhead;         /* next byte to XMIT */
	int			xleft;          /* bytes left in XMIT queue  */

	unsigned char		raw_buf[4];
	unsigned char		cooked_buf[400];

	unsigned int		rx_count;
	unsigned int		rx_count_cooked;

	int			mtu;		/* Our mtu (to spot changes!) */
	int			buffsize;       /* Max buffers sizes */

	unsigned long		flags;		/* Flag values/ mode etc */
	unsigned char		mode;		/* 6pack mode */

	/* 6pack stuff */
	unsigned char		tx_delay;
	unsigned char		persistence;
	unsigned char		slottime;
	unsigned char		duplex;
	unsigned char		led_state;
	unsigned char		status;
	unsigned char		status1;
	unsigned char		status2;
	unsigned char		tx_enable;
	unsigned char		tnc_state;

	struct timer_list	tx_t;
	struct timer_list	resync_t;
	atomic_t		refcnt;
	struct semaphore	dead_sem;
	spinlock_t		lock;
};

#define AX25_6PACK_HEADER_LEN 0

static void sixpack_decode(struct sixpack *, unsigned char[], int);
static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);

/*
 * Perform the persistence/slottime algorithm for CSMA access. If the
 * persistence check was successful, write the data to the serial driver.
 * Note that in case of DAMA operation, the data is not sent here.
 */

static void sp_xmit_on_air(unsigned long channel)
{
	struct sixpack *sp = (struct sixpack *) channel;
	int actual, when = sp->slottime;
	static unsigned char random;

	random = random * 17 + 41;

	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
		sp->led_state = 0x70;
		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
		sp->tx_enable = 1;
		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
		sp->xleft -= actual;
		sp->xhead += actual;
		sp->led_state = 0x60;
		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
		sp->status2 = 0;
	} else
		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
}

/* ----> 6pack timer interrupt handler and friends. <---- */

/* Encapsulate one AX.25 frame and stuff into a TTY queue. */
static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
{
	unsigned char *msg, *p = icp;
	int actual, count;

	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
		msg = "oversized transmit packet!";
		goto out_drop;
	}

	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
		msg = "oversized transmit packet!";
		goto out_drop;
	}

	if (p[0] > 5) {
		msg = "invalid KISS command";
		goto out_drop;
	}

	if ((p[0] != 0) && (len > 2)) {
		msg = "KISS control packet too long";
		goto out_drop;
	}

	if ((p[0] == 0) && (len < 15)) {
		msg = "bad AX.25 packet to transmit";
		goto out_drop;
	}

	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);

	switch (p[0]) {
	case 1:	sp->tx_delay = p[1];
		return;
	case 2:	sp->persistence = p[1];
		return;
	case 3:	sp->slottime = p[1];
		return;
	case 4:	/* ignored */
		return;
	case 5:	sp->duplex = p[1];
		return;
	}

	if (p[0] != 0)
		return;

	/*
	 * In case of fullduplex or DAMA operation, we don't take care about the
	 * state of the DCD or of any timers, as the determination of the
	 * correct time to send is the job of the AX.25 layer. We send
	 * immediately after data has arrived.
	 */
	if (sp->duplex == 1) {
		sp->led_state = 0x70;
		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
		sp->tx_enable = 1;
		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
		sp->xleft = count - actual;
		sp->xhead = sp->xbuff + actual;
		sp->led_state = 0x60;
		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
	} else {
		sp->xleft = count;
		sp->xhead = sp->xbuff;
		sp->status2 = count;
		sp_xmit_on_air((unsigned long)sp);
	}

	return;

out_drop:
	sp->dev->stats.tx_dropped++;
	netif_start_queue(sp->dev);
	if (net_ratelimit())
		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
}

/* Encapsulate an IP datagram and kick it into a TTY queue. */

static int sp_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct sixpack *sp = netdev_priv(dev);

	spin_lock_bh(&sp->lock);
	/* We were not busy, so we are now... :-) */
	netif_stop_queue(dev);
	dev->stats.tx_bytes += skb->len;
	sp_encaps(sp, skb->data, skb->len);
	spin_unlock_bh(&sp->lock);

	dev_kfree_skb(skb);

	return 0;
}

static int sp_open_dev(struct net_device *dev)
{
	struct sixpack *sp = netdev_priv(dev);

	if (sp->tty == NULL)
		return -ENODEV;
	return 0;
}

/* Close the low-level part of the 6pack channel. */
static int sp_close(struct net_device *dev)
{
	struct sixpack *sp = netdev_priv(dev);

	spin_lock_bh(&sp->lock);
	if (sp->tty) {
		/* TTY discipline is running. */
		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
	}
	netif_stop_queue(dev);
	spin_unlock_bh(&sp->lock);

	return 0;
}

/* Return the frame type ID */
static int sp_header(struct sk_buff *skb, struct net_device *dev,
		     unsigned short type, const void *daddr,
		     const void *saddr, unsigned len)
{
#ifdef CONFIG_INET
	if (type != ETH_P_AX25)
		return ax25_hard_header(skb, dev, type, daddr, saddr, len);
#endif
	return 0;
}

static int sp_set_mac_address(struct net_device *dev, void *addr)
{
	struct sockaddr_ax25 *sa = addr;

	netif_tx_lock_bh(dev);
	netif_addr_lock(dev);
	memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
	netif_addr_unlock(dev);
	netif_tx_unlock_bh(dev);

	return 0;
}

static int sp_rebuild_header(struct sk_buff *skb)
{
#ifdef CONFIG_INET
	return ax25_rebuild_header(skb);
#else
	return 0;
#endif
}

static const struct header_ops sp_header_ops = {
	.create		= sp_header,
	.rebuild	= sp_rebuild_header,
};

static const struct net_device_ops sp_netdev_ops = {
	.ndo_open		= sp_open_dev,
	.ndo_stop		= sp_close,
	.ndo_start_xmit		= sp_xmit,
	.ndo_set_mac_address    = sp_set_mac_address,
};

static void sp_setup(struct net_device *dev)
{
	/* Finish setting up the DEVICE info. */
	dev->netdev_ops		= &sp_netdev_ops;
	dev->destructor		= free_netdev;
	dev->mtu		= SIXP_MTU;
	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
	dev->header_ops 	= &sp_header_ops;

	dev->addr_len		= AX25_ADDR_LEN;
	dev->type		= ARPHRD_AX25;
	dev->tx_queue_len	= 10;

	/* Only activated in AX.25 mode */
	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);

	dev->flags		= 0;
}

/* Send one completely decapsulated IP datagram to the IP layer. */

/*
 * This is the routine that sends the received data to the kernel AX.25.
 * 'cmd' is the KISS command. For AX.25 data, it is zero.
 */

static void sp_bump(struct sixpack *sp, char cmd)
{
	struct sk_buff *skb;
	int count;
	unsigned char *ptr;

	count = sp->rcount + 1;

	sp->dev->stats.rx_bytes += count;

	if ((skb = dev_alloc_skb(count)) == NULL)
		goto out_mem;

	ptr = skb_put(skb, count);
	*ptr++ = cmd;	/* KISS command */

	memcpy(ptr, sp->cooked_buf + 1, count);
	skb->protocol = ax25_type_trans(skb, sp->dev);
	netif_rx(skb);
	sp->dev->stats.rx_packets++;

	return;

out_mem:
	sp->dev->stats.rx_dropped++;
}


/* ----------------------------------------------------------------------- */

/*
 * We have a potential race on dereferencing tty->disc_data, because the tty
 * layer provides no locking at all - thus one cpu could be running
 * sixpack_receive_buf while another calls sixpack_close, which zeroes
 * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
 * best way to fix this is to use a rwlock in the tty struct, but for now we
 * use a single global rwlock for all ttys in ppp line discipline.
 */
static DEFINE_RWLOCK(disc_data_lock);
                                                                                
static struct sixpack *sp_get(struct tty_struct *tty)
{
	struct sixpack *sp;

	read_lock(&disc_data_lock);
	sp = tty->disc_data;
	if (sp)
		atomic_inc(&sp->refcnt);
	read_unlock(&disc_data_lock);

	return sp;
}

static void sp_put(struct sixpack *sp)
{
	if (atomic_dec_and_test(&sp->refcnt))
		up(&sp->dead_sem);
}

/*
 * Called by the TTY driver when there's room for more data.  If we have
 * more packets to send, we send them here.
 */
static void sixpack_write_wakeup(struct tty_struct *tty)
{
	struct sixpack *sp = sp_get(tty);
	int actual;

	if (!sp)
		return;
	if (sp->xleft <= 0)  {
		/* Now serial buffer is almost free & we can start
		 * transmission of another packet */
		sp->dev->stats.tx_packets++;
		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
		sp->tx_enable = 0;
		netif_wake_queue(sp->dev);
		goto out;
	}

	if (sp->tx_enable) {
		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
		sp->xleft -= actual;
		sp->xhead += actual;
	}

out:
	sp_put(sp);
}

/* ----------------------------------------------------------------------- */

/*
 * Handle the 'receiver data ready' interrupt.
 * This function is called by the 'tty_io' module in the kernel when
 * a block of 6pack data has been received, which can now be decapsulated
 * and sent on to some IP layer for further processing.
 */
static void sixpack_receive_buf(struct tty_struct *tty,
	const unsigned char *cp, char *fp, int count)
{
	struct sixpack *sp;
	unsigned char buf[512];
	int count1;

	if (!count)
		return;

	sp = sp_get(tty);
	if (!sp)
		return;

	memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf));

	/* Read the characters out of the buffer */

	count1 = count;
	while (count) {
		count--;
		if (fp && *fp++) {
			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
				sp->dev->stats.rx_errors++;
			continue;
		}
	}
	sixpack_decode(sp, buf, count1);

	sp_put(sp);
	tty_unthrottle(tty);
}

/*
 * Try to resync the TNC. Called by the resync timer defined in
 * decode_prio_command
 */

#define TNC_UNINITIALIZED	0
#define TNC_UNSYNC_STARTUP	1
#define TNC_UNSYNCED		2
#define TNC_IN_SYNC		3

static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
{
	char *msg;

	switch (new_tnc_state) {
	default:			/* gcc oh piece-o-crap ... */
	case TNC_UNSYNC_STARTUP:
		msg = "Synchronizing with TNC";
		break;
	case TNC_UNSYNCED:
		msg = "Lost synchronization with TNC\n";
		break;
	case TNC_IN_SYNC:
		msg = "Found TNC";
		break;
	}

	sp->tnc_state = new_tnc_state;
	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
}

static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
{
	int old_tnc_state = sp->tnc_state;

	if (old_tnc_state != new_tnc_state)
		__tnc_set_sync_state(sp, new_tnc_state);
}

static void resync_tnc(unsigned long channel)
{
	struct sixpack *sp = (struct sixpack *) channel;
	static char resync_cmd = 0xe8;

	/* clear any data that might have been received */

	sp->rx_count = 0;
	sp->rx_count_cooked = 0;

	/* reset state machine */

	sp->status = 1;
	sp->status1 = 1;
	sp->status2 = 0;

	/* resync the TNC */

	sp->led_state = 0x60;
	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
	sp->tty->ops->write(sp->tty, &resync_cmd, 1);


	/* Start resync timer again -- the TNC might be still absent */

	del_timer(&sp->resync_t);
	sp->resync_t.data	= (unsigned long) sp;
	sp->resync_t.function	= resync_tnc;
	sp->resync_t.expires	= jiffies + SIXP_RESYNC_TIMEOUT;
	add_timer(&sp->resync_t);
}

static inline int tnc_init(struct sixpack *sp)
{
	unsigned char inbyte = 0xe8;

	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);

	sp->tty->ops->write(sp->tty, &inbyte, 1);

	del_timer(&sp->resync_t);
	sp->resync_t.data = (unsigned long) sp;
	sp->resync_t.function = resync_tnc;
	sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
	add_timer(&sp->resync_t);

	return 0;
}

/*
 * Open the high-level part of the 6pack channel.
 * This function is called by the TTY module when the
 * 6pack line discipline is called for.  Because we are
 * sure the tty line exists, we only have to link it to
 * a free 6pcack channel...
 */
static int sixpack_open(struct tty_struct *tty)
{
	char *rbuff = NULL, *xbuff = NULL;
	struct net_device *dev;
	struct sixpack *sp;
	unsigned long len;
	int err = 0;

	if (!capable(CAP_NET_ADMIN))
		return -EPERM;
	if (tty->ops->write == NULL)
		return -EOPNOTSUPP;

	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", sp_setup);
	if (!dev) {
		err = -ENOMEM;
		goto out;
	}

	sp = netdev_priv(dev);
	sp->dev = dev;

	spin_lock_init(&sp->lock);
	atomic_set(&sp->refcnt, 1);
	init_MUTEX_LOCKED(&sp->dead_sem);

	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */

	len = dev->mtu * 2;

	rbuff = kmalloc(len + 4, GFP_KERNEL);
	xbuff = kmalloc(len + 4, GFP_KERNEL);

	if (rbuff == NULL || xbuff == NULL) {
		err = -ENOBUFS;
		goto out_free;
	}

	spin_lock_bh(&sp->lock);

	sp->tty = tty;

	sp->rbuff	= rbuff;
	sp->xbuff	= xbuff;

	sp->mtu		= AX25_MTU + 73;
	sp->buffsize	= len;
	sp->rcount	= 0;
	sp->rx_count	= 0;
	sp->rx_count_cooked = 0;
	sp->xleft	= 0;

	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */

	sp->duplex	= 0;
	sp->tx_delay    = SIXP_TXDELAY;
	sp->persistence = SIXP_PERSIST;
	sp->slottime    = SIXP_SLOTTIME;
	sp->led_state   = 0x60;
	sp->status      = 1;
	sp->status1     = 1;
	sp->status2     = 0;
	sp->tx_enable   = 0;

	netif_start_queue(dev);

	init_timer(&sp->tx_t);
	sp->tx_t.function = sp_xmit_on_air;
	sp->tx_t.data = (unsigned long) sp;

	init_timer(&sp->resync_t);

	spin_unlock_bh(&sp->lock);

	/* Done.  We have linked the TTY line to a channel. */
	tty->disc_data = sp;
	tty->receive_room = 65536;

	/* Now we're ready to register. */
	if (register_netdev(dev))
		goto out_free;

	tnc_init(sp);

	return 0;

out_free:
	kfree(xbuff);
	kfree(rbuff);

	if (dev)
		free_netdev(dev);

out:
	return err;
}


/*
 * Close down a 6pack channel.
 * This means flushing out any pending queues, and then restoring the
 * TTY line discipline to what it was before it got hooked to 6pack
 * (which usually is TTY again).
 */
static void sixpack_close(struct tty_struct *tty)
{
	struct sixpack *sp;

	write_lock(&disc_data_lock);
	sp = tty->disc_data;
	tty->disc_data = NULL;
	write_unlock(&disc_data_lock);
	if (!sp)
		return;

	/*
	 * We have now ensured that nobody can start using ap from now on, but
	 * we have to wait for all existing users to finish.
	 */
	if (!atomic_dec_and_test(&sp->refcnt))
		down(&sp->dead_sem);

	unregister_netdev(sp->dev);

	del_timer(&sp->tx_t);
	del_timer(&sp->resync_t);

	/* Free all 6pack frame buffers. */
	kfree(sp->rbuff);
	kfree(sp->xbuff);
}

/* Perform I/O control on an active 6pack channel. */
static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
	unsigned int cmd, unsigned long arg)
{
	struct sixpack *sp = sp_get(tty);
	struct net_device *dev;
	unsigned int tmp, err;

	if (!sp)
		return -ENXIO;
	dev = sp->dev;

	switch(cmd) {
	case SIOCGIFNAME:
		err = copy_to_user((void __user *) arg, dev->name,
		                   strlen(dev->name) + 1) ? -EFAULT : 0;
		break;

	case SIOCGIFENCAP:
		err = put_user(0, (int __user *) arg);
		break;

	case SIOCSIFENCAP:
		if (get_user(tmp, (int __user *) arg)) {
			err = -EFAULT;
			break;
		}

		sp->mode = tmp;
		dev->addr_len        = AX25_ADDR_LEN;
		dev->hard_header_len = AX25_KISS_HEADER_LEN +
		                       AX25_MAX_HEADER_LEN + 3;
		dev->type            = ARPHRD_AX25;

		err = 0;
		break;

	 case SIOCSIFHWADDR: {
		char addr[AX25_ADDR_LEN];

		if (copy_from_user(&addr,
		                   (void __user *) arg, AX25_ADDR_LEN)) {
				err = -EFAULT;
				break;
			}

			netif_tx_lock_bh(dev);
			memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
			netif_tx_unlock_bh(dev);

			err = 0;
			break;
		}

	default:
		err = tty_mode_ioctl(tty, file, cmd, arg);
	}

	sp_put(sp);

	return err;
}

static struct tty_ldisc_ops sp_ldisc = {
	.owner		= THIS_MODULE,
	.magic		= TTY_LDISC_MAGIC,
	.name		= "6pack",
	.open		= sixpack_open,
	.close		= sixpack_close,
	.ioctl		= sixpack_ioctl,
	.receive_buf	= sixpack_receive_buf,
	.write_wakeup	= sixpack_write_wakeup,
};

/* Initialize 6pack control device -- register 6pack line discipline */

static const char msg_banner[]  __initdata = KERN_INFO \
	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
static const char msg_regfail[] __initdata = KERN_ERR  \
	"6pack: can't register line discipline (err = %d)\n";

static int __init sixpack_init_driver(void)
{
	int status;

	printk(msg_banner);

	/* Register the provided line protocol discipline */
	if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
		printk(msg_regfail, status);

	return status;
}

static const char msg_unregfail[] __exitdata = KERN_ERR \
	"6pack: can't unregister line discipline (err = %d)\n";

static void __exit sixpack_exit_driver(void)
{
	int ret;

	if ((ret = tty_unregister_ldisc(N_6PACK)))
		printk(msg_unregfail, ret);
}

/* encode an AX.25 packet into 6pack */

static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
	int length, unsigned char tx_delay)
{
	int count = 0;
	unsigned char checksum = 0, buf[400];
	int raw_count = 0;

	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
	tx_buf_raw[raw_count++] = SIXP_SEOF;

	buf[0] = tx_delay;
	for (count = 1; count < length; count++)
		buf[count] = tx_buf[count];

	for (count = 0; count < length; count++)
		checksum += buf[count];
	buf[length] = (unsigned char) 0xff - checksum;

	for (count = 0; count <= length; count++) {
		if ((count % 3) == 0) {
			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
		} else if ((count % 3) == 1) {
			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
		} else {
			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
			tx_buf_raw[raw_count++] = (buf[count] >> 2);
		}
	}
	if ((length % 3) != 2)
		raw_count++;
	tx_buf_raw[raw_count++] = SIXP_SEOF;
	return raw_count;
}

/* decode 4 sixpack-encoded bytes into 3 data bytes */

static void decode_data(struct sixpack *sp, unsigned char inbyte)
{
	unsigned char *buf;

	if (sp->rx_count != 3) {
		sp->raw_buf[sp->rx_count++] = inbyte;

		return;
	}

	buf = sp->raw_buf;
	sp->cooked_buf[sp->rx_count_cooked++] =
		buf[0] | ((buf[1] << 2) & 0xc0);
	sp->cooked_buf[sp->rx_count_cooked++] =
		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
	sp->cooked_buf[sp->rx_count_cooked++] =
		(buf[2] & 0x03) | (inbyte << 2);
	sp->rx_count = 0;
}

/* identify and execute a 6pack priority command byte */

static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
{
	unsigned char channel;
	int actual;

	channel = cmd & SIXP_CHN_MASK;
	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */

	/* RX and DCD flags can only be set in the same prio command,
	   if the DCD flag has been set without the RX flag in the previous
	   prio command. If DCD has not been set before, something in the
	   transmission has gone wrong. In this case, RX and DCD are
	   cleared in order to prevent the decode_data routine from
	   reading further data that might be corrupt. */

		if (((sp->status & SIXP_DCD_MASK) == 0) &&
			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
				if (sp->status != 1)
					printk(KERN_DEBUG "6pack: protocol violation\n");
				else
					sp->status = 0;
				cmd &= ~SIXP_RX_DCD_MASK;
		}
		sp->status = cmd & SIXP_PRIO_DATA_MASK;
	} else { /* output watchdog char if idle */
		if ((sp->status2 != 0) && (sp->duplex == 1)) {
			sp->led_state = 0x70;
			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
			sp->tx_enable = 1;
			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
			sp->xleft -= actual;
			sp->xhead += actual;
			sp->led_state = 0x60;
			sp->status2 = 0;

		}
	}

	/* needed to trigger the TNC watchdog */
	sp->tty->ops->write(sp->tty, &sp->led_state, 1);

        /* if the state byte has been received, the TNC is present,
           so the resync timer can be reset. */

	if (sp->tnc_state == TNC_IN_SYNC) {
		del_timer(&sp->resync_t);
		sp->resync_t.data	= (unsigned long) sp;
		sp->resync_t.function	= resync_tnc;
		sp->resync_t.expires	= jiffies + SIXP_INIT_RESYNC_TIMEOUT;
		add_timer(&sp->resync_t);
	}

	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
}

/* identify and execute a standard 6pack command byte */

static void decode_std_command(struct sixpack *sp, unsigned char cmd)
{
	unsigned char checksum = 0, rest = 0, channel;
	short i;

	channel = cmd & SIXP_CHN_MASK;
	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
	case SIXP_SEOF:
		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
			if ((sp->status & SIXP_RX_DCD_MASK) ==
				SIXP_RX_DCD_MASK) {
				sp->led_state = 0x68;
				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
			}
		} else {
			sp->led_state = 0x60;
			/* fill trailing bytes with zeroes */
			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
			rest = sp->rx_count;
			if (rest != 0)
				 for (i = rest; i <= 3; i++)
					decode_data(sp, 0);
			if (rest == 2)
				sp->rx_count_cooked -= 2;
			else if (rest == 3)
				sp->rx_count_cooked -= 1;
			for (i = 0; i < sp->rx_count_cooked; i++)
				checksum += sp->cooked_buf[i];
			if (checksum != SIXP_CHKSUM) {
				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
			} else {
				sp->rcount = sp->rx_count_cooked-2;
				sp_bump(sp, 0);
			}
			sp->rx_count_cooked = 0;
		}
		break;
	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
		break;
	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
		break;
	case SIXP_RX_BUF_OVL:
		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
	}
}

/* decode a 6pack packet */

static void
sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count)
{
	unsigned char inbyte;
	int count1;

	for (count1 = 0; count1 < count; count1++) {
		inbyte = pre_rbuff[count1];
		if (inbyte == SIXP_FOUND_TNC) {
			tnc_set_sync_state(sp, TNC_IN_SYNC);
			del_timer(&sp->resync_t);
		}
		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
			decode_prio_command(sp, inbyte);
		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
			decode_std_command(sp, inbyte);
		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
			decode_data(sp, inbyte);
	}
}

MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
MODULE_DESCRIPTION("6pack driver for AX.25");
MODULE_LICENSE("GPL");
MODULE_ALIAS_LDISC(N_6PACK);

module_init(sixpack_init_driver);
module_exit(sixpack_exit_driver);