capability.c 12 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
/*
 * linux/kernel/capability.c
 *
 * Copyright (C) 1997  Andrew Main <zefram@fysh.org>
 *
 * Integrated into 2.1.97+,  Andrew G. Morgan <morgan@kernel.org>
 * 30 May 2002:	Cleanup, Robert M. Love <rml@tech9.net>
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/audit.h>
#include <linux/capability.h>
#include <linux/mm.h>
#include <linux/export.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/pid_namespace.h>
#include <linux/user_namespace.h>
#include <asm/uaccess.h>

/*
 * Leveraged for setting/resetting capabilities
 */

const kernel_cap_t __cap_empty_set = CAP_EMPTY_SET;
EXPORT_SYMBOL(__cap_empty_set);

int file_caps_enabled = 1;

static int __init file_caps_disable(char *str)
{
	file_caps_enabled = 0;
	return 1;
}
__setup("no_file_caps", file_caps_disable);

/*
 * More recent versions of libcap are available from:
 *
 *   http://www.kernel.org/pub/linux/libs/security/linux-privs/
 */

static void warn_legacy_capability_use(void)
{
	char name[sizeof(current->comm)];

	pr_info_once("warning: `%s' uses 32-bit capabilities (legacy support in use)\n",
		     get_task_comm(name, current));
}

/*
 * Version 2 capabilities worked fine, but the linux/capability.h file
 * that accompanied their introduction encouraged their use without
 * the necessary user-space source code changes. As such, we have
 * created a version 3 with equivalent functionality to version 2, but
 * with a header change to protect legacy source code from using
 * version 2 when it wanted to use version 1. If your system has code
 * that trips the following warning, it is using version 2 specific
 * capabilities and may be doing so insecurely.
 *
 * The remedy is to either upgrade your version of libcap (to 2.10+,
 * if the application is linked against it), or recompile your
 * application with modern kernel headers and this warning will go
 * away.
 */

static void warn_deprecated_v2(void)
{
	char name[sizeof(current->comm)];

	pr_info_once("warning: `%s' uses deprecated v2 capabilities in a way that may be insecure\n",
		     get_task_comm(name, current));
}

/*
 * Version check. Return the number of u32s in each capability flag
 * array, or a negative value on error.
 */
static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy)
{
	__u32 version;

	if (get_user(version, &header->version))
		return -EFAULT;

	switch (version) {
	case _LINUX_CAPABILITY_VERSION_1:
		warn_legacy_capability_use();
		*tocopy = _LINUX_CAPABILITY_U32S_1;
		break;
	case _LINUX_CAPABILITY_VERSION_2:
		warn_deprecated_v2();
		/*
		 * fall through - v3 is otherwise equivalent to v2.
		 */
	case _LINUX_CAPABILITY_VERSION_3:
		*tocopy = _LINUX_CAPABILITY_U32S_3;
		break;
	default:
		if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version))
			return -EFAULT;
		return -EINVAL;
	}

	return 0;
}

/*
 * The only thing that can change the capabilities of the current
 * process is the current process. As such, we can't be in this code
 * at the same time as we are in the process of setting capabilities
 * in this process. The net result is that we can limit our use of
 * locks to when we are reading the caps of another process.
 */
static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp,
				     kernel_cap_t *pIp, kernel_cap_t *pPp)
{
	int ret;

	if (pid && (pid != task_pid_vnr(current))) {
		struct task_struct *target;

		rcu_read_lock();

		target = find_task_by_vpid(pid);
		if (!target)
			ret = -ESRCH;
		else
			ret = security_capget(target, pEp, pIp, pPp);

		rcu_read_unlock();
	} else
		ret = security_capget(current, pEp, pIp, pPp);

	return ret;
}

/**
 * sys_capget - get the capabilities of a given process.
 * @header: pointer to struct that contains capability version and
 *	target pid data
 * @dataptr: pointer to struct that contains the effective, permitted,
 *	and inheritable capabilities that are returned
 *
 * Returns 0 on success and < 0 on error.
 */
SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr)
{
	int ret = 0;
	pid_t pid;
	unsigned tocopy;
	kernel_cap_t pE, pI, pP;

	ret = cap_validate_magic(header, &tocopy);
	if ((dataptr == NULL) || (ret != 0))
		return ((dataptr == NULL) && (ret == -EINVAL)) ? 0 : ret;

	if (get_user(pid, &header->pid))
		return -EFAULT;

	if (pid < 0)
		return -EINVAL;

	ret = cap_get_target_pid(pid, &pE, &pI, &pP);
	if (!ret) {
		struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
		unsigned i;

		for (i = 0; i < tocopy; i++) {
			kdata[i].effective = pE.cap[i];
			kdata[i].permitted = pP.cap[i];
			kdata[i].inheritable = pI.cap[i];
		}

		/*
		 * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S,
		 * we silently drop the upper capabilities here. This
		 * has the effect of making older libcap
		 * implementations implicitly drop upper capability
		 * bits when they perform a: capget/modify/capset
		 * sequence.
		 *
		 * This behavior is considered fail-safe
		 * behavior. Upgrading the application to a newer
		 * version of libcap will enable access to the newer
		 * capabilities.
		 *
		 * An alternative would be to return an error here
		 * (-ERANGE), but that causes legacy applications to
		 * unexpectedly fail; the capget/modify/capset aborts
		 * before modification is attempted and the application
		 * fails.
		 */
		if (copy_to_user(dataptr, kdata, tocopy
				 * sizeof(struct __user_cap_data_struct))) {
			return -EFAULT;
		}
	}

	return ret;
}

/**
 * sys_capset - set capabilities for a process or (*) a group of processes
 * @header: pointer to struct that contains capability version and
 *	target pid data
 * @data: pointer to struct that contains the effective, permitted,
 *	and inheritable capabilities
 *
 * Set capabilities for the current process only.  The ability to any other
 * process(es) has been deprecated and removed.
 *
 * The restrictions on setting capabilities are specified as:
 *
 * I: any raised capabilities must be a subset of the old permitted
 * P: any raised capabilities must be a subset of the old permitted
 * E: must be set to a subset of new permitted
 *
 * Returns 0 on success and < 0 on error.
 */
SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data)
{
	struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
	unsigned i, tocopy, copybytes;
	kernel_cap_t inheritable, permitted, effective;
	struct cred *new;
	int ret;
	pid_t pid;

	ret = cap_validate_magic(header, &tocopy);
	if (ret != 0)
		return ret;

	if (get_user(pid, &header->pid))
		return -EFAULT;

	/* may only affect current now */
	if (pid != 0 && pid != task_pid_vnr(current))
		return -EPERM;

	copybytes = tocopy * sizeof(struct __user_cap_data_struct);
	if (copybytes > sizeof(kdata))
		return -EFAULT;

	if (copy_from_user(&kdata, data, copybytes))
		return -EFAULT;

	for (i = 0; i < tocopy; i++) {
		effective.cap[i] = kdata[i].effective;
		permitted.cap[i] = kdata[i].permitted;
		inheritable.cap[i] = kdata[i].inheritable;
	}
	while (i < _KERNEL_CAPABILITY_U32S) {
		effective.cap[i] = 0;
		permitted.cap[i] = 0;
		inheritable.cap[i] = 0;
		i++;
	}

	effective.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
	permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
	inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;

	new = prepare_creds();
	if (!new)
		return -ENOMEM;

	ret = security_capset(new, current_cred(),
			      &effective, &inheritable, &permitted);
	if (ret < 0)
		goto error;

	audit_log_capset(new, current_cred());

	return commit_creds(new);

error:
	abort_creds(new);
	return ret;
}

/**
 * has_ns_capability - Does a task have a capability in a specific user ns
 * @t: The task in question
 * @ns: target user namespace
 * @cap: The capability to be tested for
 *
 * Return true if the specified task has the given superior capability
 * currently in effect to the specified user namespace, false if not.
 *
 * Note that this does not set PF_SUPERPRIV on the task.
 */
bool has_ns_capability(struct task_struct *t,
		       struct user_namespace *ns, int cap)
{
	int ret;

	rcu_read_lock();
	ret = security_capable(__task_cred(t), ns, cap);
	rcu_read_unlock();

	return (ret == 0);
}

/**
 * has_capability - Does a task have a capability in init_user_ns
 * @t: The task in question
 * @cap: The capability to be tested for
 *
 * Return true if the specified task has the given superior capability
 * currently in effect to the initial user namespace, false if not.
 *
 * Note that this does not set PF_SUPERPRIV on the task.
 */
bool has_capability(struct task_struct *t, int cap)
{
	return has_ns_capability(t, &init_user_ns, cap);
}

/**
 * has_ns_capability_noaudit - Does a task have a capability (unaudited)
 * in a specific user ns.
 * @t: The task in question
 * @ns: target user namespace
 * @cap: The capability to be tested for
 *
 * Return true if the specified task has the given superior capability
 * currently in effect to the specified user namespace, false if not.
 * Do not write an audit message for the check.
 *
 * Note that this does not set PF_SUPERPRIV on the task.
 */
bool has_ns_capability_noaudit(struct task_struct *t,
			       struct user_namespace *ns, int cap)
{
	int ret;

	rcu_read_lock();
	ret = security_capable_noaudit(__task_cred(t), ns, cap);
	rcu_read_unlock();

	return (ret == 0);
}

/**
 * has_capability_noaudit - Does a task have a capability (unaudited) in the
 * initial user ns
 * @t: The task in question
 * @cap: The capability to be tested for
 *
 * Return true if the specified task has the given superior capability
 * currently in effect to init_user_ns, false if not.  Don't write an
 * audit message for the check.
 *
 * Note that this does not set PF_SUPERPRIV on the task.
 */
bool has_capability_noaudit(struct task_struct *t, int cap)
{
	return has_ns_capability_noaudit(t, &init_user_ns, cap);
}

/**
 * ns_capable - Determine if the current task has a superior capability in effect
 * @ns:  The usernamespace we want the capability in
 * @cap: The capability to be tested for
 *
 * Return true if the current task has the given superior capability currently
 * available for use, false if not.
 *
 * This sets PF_SUPERPRIV on the task if the capability is available on the
 * assumption that it's about to be used.
 */
bool ns_capable(struct user_namespace *ns, int cap)
{
	if (unlikely(!cap_valid(cap))) {
		pr_crit("capable() called with invalid cap=%u\n", cap);
		BUG();
	}

	if (security_capable(current_cred(), ns, cap) == 0) {
		current->flags |= PF_SUPERPRIV;
		return true;
	}
	return false;
}
EXPORT_SYMBOL(ns_capable);

/**
 * file_ns_capable - Determine if the file's opener had a capability in effect
 * @file:  The file we want to check
 * @ns:  The usernamespace we want the capability in
 * @cap: The capability to be tested for
 *
 * Return true if task that opened the file had a capability in effect
 * when the file was opened.
 *
 * This does not set PF_SUPERPRIV because the caller may not
 * actually be privileged.
 */
bool file_ns_capable(const struct file *file, struct user_namespace *ns,
		     int cap)
{
	if (WARN_ON_ONCE(!cap_valid(cap)))
		return false;

	if (security_capable(file->f_cred, ns, cap) == 0)
		return true;

	return false;
}
EXPORT_SYMBOL(file_ns_capable);

/**
 * capable - Determine if the current task has a superior capability in effect
 * @cap: The capability to be tested for
 *
 * Return true if the current task has the given superior capability currently
 * available for use, false if not.
 *
 * This sets PF_SUPERPRIV on the task if the capability is available on the
 * assumption that it's about to be used.
 */
bool capable(int cap)
{
	return ns_capable(&init_user_ns, cap);
}
EXPORT_SYMBOL(capable);

/**
 * capable_wrt_inode_uidgid - Check nsown_capable and uid and gid mapped
 * @inode: The inode in question
 * @cap: The capability in question
 *
 * Return true if the current task has the given capability targeted at
 * its own user namespace and that the given inode's uid and gid are
 * mapped into the current user namespace.
 */
bool capable_wrt_inode_uidgid(const struct inode *inode, int cap)
{
	struct user_namespace *ns = current_user_ns();

	return ns_capable(ns, cap) && kuid_has_mapping(ns, inode->i_uid) &&
		kgid_has_mapping(ns, inode->i_gid);
}
EXPORT_SYMBOL(capable_wrt_inode_uidgid);