Commit 195b1f17492a9cfd74391e11389710ae1d9be371

Authored by David S. Miller
Committed by Greg Kroah-Hartman
1 parent ca1d67673a

sparc64: Do not insert non-valid PTEs into the TSB hash table.

[ Upstream commit 18f38132528c3e603c66ea464727b29e9bbcb91b ]

The assumption was that update_mmu_cache() (and the equivalent for PMDs) would
only be called when the PTE being installed will be accessible by the user.

This is not true for code paths originating from remove_migration_pte().

There are dire consequences for placing a non-valid PTE into the TSB.  The TLB
miss frramework assumes thatwhen a TSB entry matches we can just load it into
the TLB and return from the TLB miss trap.

So if a non-valid PTE is in there, we will deadlock taking the TLB miss over
and over, never satisfying the miss.

Just exit early from update_mmu_cache() and friends in this situation.

Based upon a report and patch from Christopher Alexander Tobias Schulze.

Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

Showing 1 changed file with 8 additions and 0 deletions Inline Diff

arch/sparc/mm/init_64.c
1 /* 1 /*
2 * arch/sparc64/mm/init.c 2 * arch/sparc64/mm/init.c
3 * 3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu) 4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */ 6 */
7 7
8 #include <linux/module.h> 8 #include <linux/module.h>
9 #include <linux/kernel.h> 9 #include <linux/kernel.h>
10 #include <linux/sched.h> 10 #include <linux/sched.h>
11 #include <linux/string.h> 11 #include <linux/string.h>
12 #include <linux/init.h> 12 #include <linux/init.h>
13 #include <linux/bootmem.h> 13 #include <linux/bootmem.h>
14 #include <linux/mm.h> 14 #include <linux/mm.h>
15 #include <linux/hugetlb.h> 15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h> 16 #include <linux/initrd.h>
17 #include <linux/swap.h> 17 #include <linux/swap.h>
18 #include <linux/pagemap.h> 18 #include <linux/pagemap.h>
19 #include <linux/poison.h> 19 #include <linux/poison.h>
20 #include <linux/fs.h> 20 #include <linux/fs.h>
21 #include <linux/seq_file.h> 21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h> 22 #include <linux/kprobes.h>
23 #include <linux/cache.h> 23 #include <linux/cache.h>
24 #include <linux/sort.h> 24 #include <linux/sort.h>
25 #include <linux/percpu.h> 25 #include <linux/percpu.h>
26 #include <linux/memblock.h> 26 #include <linux/memblock.h>
27 #include <linux/mmzone.h> 27 #include <linux/mmzone.h>
28 #include <linux/gfp.h> 28 #include <linux/gfp.h>
29 29
30 #include <asm/head.h> 30 #include <asm/head.h>
31 #include <asm/page.h> 31 #include <asm/page.h>
32 #include <asm/pgalloc.h> 32 #include <asm/pgalloc.h>
33 #include <asm/pgtable.h> 33 #include <asm/pgtable.h>
34 #include <asm/oplib.h> 34 #include <asm/oplib.h>
35 #include <asm/iommu.h> 35 #include <asm/iommu.h>
36 #include <asm/io.h> 36 #include <asm/io.h>
37 #include <asm/uaccess.h> 37 #include <asm/uaccess.h>
38 #include <asm/mmu_context.h> 38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h> 39 #include <asm/tlbflush.h>
40 #include <asm/dma.h> 40 #include <asm/dma.h>
41 #include <asm/starfire.h> 41 #include <asm/starfire.h>
42 #include <asm/tlb.h> 42 #include <asm/tlb.h>
43 #include <asm/spitfire.h> 43 #include <asm/spitfire.h>
44 #include <asm/sections.h> 44 #include <asm/sections.h>
45 #include <asm/tsb.h> 45 #include <asm/tsb.h>
46 #include <asm/hypervisor.h> 46 #include <asm/hypervisor.h>
47 #include <asm/prom.h> 47 #include <asm/prom.h>
48 #include <asm/mdesc.h> 48 #include <asm/mdesc.h>
49 #include <asm/cpudata.h> 49 #include <asm/cpudata.h>
50 #include <asm/irq.h> 50 #include <asm/irq.h>
51 51
52 #include "init_64.h" 52 #include "init_64.h"
53 53
54 unsigned long kern_linear_pte_xor[4] __read_mostly; 54 unsigned long kern_linear_pte_xor[4] __read_mostly;
55 55
56 /* A bitmap, two bits for every 256MB of physical memory. These two 56 /* A bitmap, two bits for every 256MB of physical memory. These two
57 * bits determine what page size we use for kernel linear 57 * bits determine what page size we use for kernel linear
58 * translations. They form an index into kern_linear_pte_xor[]. The 58 * translations. They form an index into kern_linear_pte_xor[]. The
59 * value in the indexed slot is XOR'd with the TLB miss virtual 59 * value in the indexed slot is XOR'd with the TLB miss virtual
60 * address to form the resulting TTE. The mapping is: 60 * address to form the resulting TTE. The mapping is:
61 * 61 *
62 * 0 ==> 4MB 62 * 0 ==> 4MB
63 * 1 ==> 256MB 63 * 1 ==> 256MB
64 * 2 ==> 2GB 64 * 2 ==> 2GB
65 * 3 ==> 16GB 65 * 3 ==> 16GB
66 * 66 *
67 * All sun4v chips support 256MB pages. Only SPARC-T4 and later 67 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
68 * support 2GB pages, and hopefully future cpus will support the 16GB 68 * support 2GB pages, and hopefully future cpus will support the 16GB
69 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there 69 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
70 * if these larger page sizes are not supported by the cpu. 70 * if these larger page sizes are not supported by the cpu.
71 * 71 *
72 * It would be nice to determine this from the machine description 72 * It would be nice to determine this from the machine description
73 * 'cpu' properties, but we need to have this table setup before the 73 * 'cpu' properties, but we need to have this table setup before the
74 * MDESC is initialized. 74 * MDESC is initialized.
75 */ 75 */
76 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)]; 76 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
77 77
78 #ifndef CONFIG_DEBUG_PAGEALLOC 78 #ifndef CONFIG_DEBUG_PAGEALLOC
79 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings. 79 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
80 * Space is allocated for this right after the trap table in 80 * Space is allocated for this right after the trap table in
81 * arch/sparc64/kernel/head.S 81 * arch/sparc64/kernel/head.S
82 */ 82 */
83 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES]; 83 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
84 #endif 84 #endif
85 85
86 static unsigned long cpu_pgsz_mask; 86 static unsigned long cpu_pgsz_mask;
87 87
88 #define MAX_BANKS 32 88 #define MAX_BANKS 32
89 89
90 static struct linux_prom64_registers pavail[MAX_BANKS]; 90 static struct linux_prom64_registers pavail[MAX_BANKS];
91 static int pavail_ents; 91 static int pavail_ents;
92 92
93 static int cmp_p64(const void *a, const void *b) 93 static int cmp_p64(const void *a, const void *b)
94 { 94 {
95 const struct linux_prom64_registers *x = a, *y = b; 95 const struct linux_prom64_registers *x = a, *y = b;
96 96
97 if (x->phys_addr > y->phys_addr) 97 if (x->phys_addr > y->phys_addr)
98 return 1; 98 return 1;
99 if (x->phys_addr < y->phys_addr) 99 if (x->phys_addr < y->phys_addr)
100 return -1; 100 return -1;
101 return 0; 101 return 0;
102 } 102 }
103 103
104 static void __init read_obp_memory(const char *property, 104 static void __init read_obp_memory(const char *property,
105 struct linux_prom64_registers *regs, 105 struct linux_prom64_registers *regs,
106 int *num_ents) 106 int *num_ents)
107 { 107 {
108 phandle node = prom_finddevice("/memory"); 108 phandle node = prom_finddevice("/memory");
109 int prop_size = prom_getproplen(node, property); 109 int prop_size = prom_getproplen(node, property);
110 int ents, ret, i; 110 int ents, ret, i;
111 111
112 ents = prop_size / sizeof(struct linux_prom64_registers); 112 ents = prop_size / sizeof(struct linux_prom64_registers);
113 if (ents > MAX_BANKS) { 113 if (ents > MAX_BANKS) {
114 prom_printf("The machine has more %s property entries than " 114 prom_printf("The machine has more %s property entries than "
115 "this kernel can support (%d).\n", 115 "this kernel can support (%d).\n",
116 property, MAX_BANKS); 116 property, MAX_BANKS);
117 prom_halt(); 117 prom_halt();
118 } 118 }
119 119
120 ret = prom_getproperty(node, property, (char *) regs, prop_size); 120 ret = prom_getproperty(node, property, (char *) regs, prop_size);
121 if (ret == -1) { 121 if (ret == -1) {
122 prom_printf("Couldn't get %s property from /memory.\n", 122 prom_printf("Couldn't get %s property from /memory.\n",
123 property); 123 property);
124 prom_halt(); 124 prom_halt();
125 } 125 }
126 126
127 /* Sanitize what we got from the firmware, by page aligning 127 /* Sanitize what we got from the firmware, by page aligning
128 * everything. 128 * everything.
129 */ 129 */
130 for (i = 0; i < ents; i++) { 130 for (i = 0; i < ents; i++) {
131 unsigned long base, size; 131 unsigned long base, size;
132 132
133 base = regs[i].phys_addr; 133 base = regs[i].phys_addr;
134 size = regs[i].reg_size; 134 size = regs[i].reg_size;
135 135
136 size &= PAGE_MASK; 136 size &= PAGE_MASK;
137 if (base & ~PAGE_MASK) { 137 if (base & ~PAGE_MASK) {
138 unsigned long new_base = PAGE_ALIGN(base); 138 unsigned long new_base = PAGE_ALIGN(base);
139 139
140 size -= new_base - base; 140 size -= new_base - base;
141 if ((long) size < 0L) 141 if ((long) size < 0L)
142 size = 0UL; 142 size = 0UL;
143 base = new_base; 143 base = new_base;
144 } 144 }
145 if (size == 0UL) { 145 if (size == 0UL) {
146 /* If it is empty, simply get rid of it. 146 /* If it is empty, simply get rid of it.
147 * This simplifies the logic of the other 147 * This simplifies the logic of the other
148 * functions that process these arrays. 148 * functions that process these arrays.
149 */ 149 */
150 memmove(&regs[i], &regs[i + 1], 150 memmove(&regs[i], &regs[i + 1],
151 (ents - i - 1) * sizeof(regs[0])); 151 (ents - i - 1) * sizeof(regs[0]));
152 i--; 152 i--;
153 ents--; 153 ents--;
154 continue; 154 continue;
155 } 155 }
156 regs[i].phys_addr = base; 156 regs[i].phys_addr = base;
157 regs[i].reg_size = size; 157 regs[i].reg_size = size;
158 } 158 }
159 159
160 *num_ents = ents; 160 *num_ents = ents;
161 161
162 sort(regs, ents, sizeof(struct linux_prom64_registers), 162 sort(regs, ents, sizeof(struct linux_prom64_registers),
163 cmp_p64, NULL); 163 cmp_p64, NULL);
164 } 164 }
165 165
166 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES / 166 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
167 sizeof(unsigned long)]; 167 sizeof(unsigned long)];
168 EXPORT_SYMBOL(sparc64_valid_addr_bitmap); 168 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
169 169
170 /* Kernel physical address base and size in bytes. */ 170 /* Kernel physical address base and size in bytes. */
171 unsigned long kern_base __read_mostly; 171 unsigned long kern_base __read_mostly;
172 unsigned long kern_size __read_mostly; 172 unsigned long kern_size __read_mostly;
173 173
174 /* Initial ramdisk setup */ 174 /* Initial ramdisk setup */
175 extern unsigned long sparc_ramdisk_image64; 175 extern unsigned long sparc_ramdisk_image64;
176 extern unsigned int sparc_ramdisk_image; 176 extern unsigned int sparc_ramdisk_image;
177 extern unsigned int sparc_ramdisk_size; 177 extern unsigned int sparc_ramdisk_size;
178 178
179 struct page *mem_map_zero __read_mostly; 179 struct page *mem_map_zero __read_mostly;
180 EXPORT_SYMBOL(mem_map_zero); 180 EXPORT_SYMBOL(mem_map_zero);
181 181
182 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly; 182 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
183 183
184 unsigned long sparc64_kern_pri_context __read_mostly; 184 unsigned long sparc64_kern_pri_context __read_mostly;
185 unsigned long sparc64_kern_pri_nuc_bits __read_mostly; 185 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
186 unsigned long sparc64_kern_sec_context __read_mostly; 186 unsigned long sparc64_kern_sec_context __read_mostly;
187 187
188 int num_kernel_image_mappings; 188 int num_kernel_image_mappings;
189 189
190 #ifdef CONFIG_DEBUG_DCFLUSH 190 #ifdef CONFIG_DEBUG_DCFLUSH
191 atomic_t dcpage_flushes = ATOMIC_INIT(0); 191 atomic_t dcpage_flushes = ATOMIC_INIT(0);
192 #ifdef CONFIG_SMP 192 #ifdef CONFIG_SMP
193 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0); 193 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
194 #endif 194 #endif
195 #endif 195 #endif
196 196
197 inline void flush_dcache_page_impl(struct page *page) 197 inline void flush_dcache_page_impl(struct page *page)
198 { 198 {
199 BUG_ON(tlb_type == hypervisor); 199 BUG_ON(tlb_type == hypervisor);
200 #ifdef CONFIG_DEBUG_DCFLUSH 200 #ifdef CONFIG_DEBUG_DCFLUSH
201 atomic_inc(&dcpage_flushes); 201 atomic_inc(&dcpage_flushes);
202 #endif 202 #endif
203 203
204 #ifdef DCACHE_ALIASING_POSSIBLE 204 #ifdef DCACHE_ALIASING_POSSIBLE
205 __flush_dcache_page(page_address(page), 205 __flush_dcache_page(page_address(page),
206 ((tlb_type == spitfire) && 206 ((tlb_type == spitfire) &&
207 page_mapping(page) != NULL)); 207 page_mapping(page) != NULL));
208 #else 208 #else
209 if (page_mapping(page) != NULL && 209 if (page_mapping(page) != NULL &&
210 tlb_type == spitfire) 210 tlb_type == spitfire)
211 __flush_icache_page(__pa(page_address(page))); 211 __flush_icache_page(__pa(page_address(page)));
212 #endif 212 #endif
213 } 213 }
214 214
215 #define PG_dcache_dirty PG_arch_1 215 #define PG_dcache_dirty PG_arch_1
216 #define PG_dcache_cpu_shift 32UL 216 #define PG_dcache_cpu_shift 32UL
217 #define PG_dcache_cpu_mask \ 217 #define PG_dcache_cpu_mask \
218 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL) 218 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
219 219
220 #define dcache_dirty_cpu(page) \ 220 #define dcache_dirty_cpu(page) \
221 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask) 221 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
222 222
223 static inline void set_dcache_dirty(struct page *page, int this_cpu) 223 static inline void set_dcache_dirty(struct page *page, int this_cpu)
224 { 224 {
225 unsigned long mask = this_cpu; 225 unsigned long mask = this_cpu;
226 unsigned long non_cpu_bits; 226 unsigned long non_cpu_bits;
227 227
228 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift); 228 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
229 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty); 229 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
230 230
231 __asm__ __volatile__("1:\n\t" 231 __asm__ __volatile__("1:\n\t"
232 "ldx [%2], %%g7\n\t" 232 "ldx [%2], %%g7\n\t"
233 "and %%g7, %1, %%g1\n\t" 233 "and %%g7, %1, %%g1\n\t"
234 "or %%g1, %0, %%g1\n\t" 234 "or %%g1, %0, %%g1\n\t"
235 "casx [%2], %%g7, %%g1\n\t" 235 "casx [%2], %%g7, %%g1\n\t"
236 "cmp %%g7, %%g1\n\t" 236 "cmp %%g7, %%g1\n\t"
237 "bne,pn %%xcc, 1b\n\t" 237 "bne,pn %%xcc, 1b\n\t"
238 " nop" 238 " nop"
239 : /* no outputs */ 239 : /* no outputs */
240 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags) 240 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
241 : "g1", "g7"); 241 : "g1", "g7");
242 } 242 }
243 243
244 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu) 244 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
245 { 245 {
246 unsigned long mask = (1UL << PG_dcache_dirty); 246 unsigned long mask = (1UL << PG_dcache_dirty);
247 247
248 __asm__ __volatile__("! test_and_clear_dcache_dirty\n" 248 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
249 "1:\n\t" 249 "1:\n\t"
250 "ldx [%2], %%g7\n\t" 250 "ldx [%2], %%g7\n\t"
251 "srlx %%g7, %4, %%g1\n\t" 251 "srlx %%g7, %4, %%g1\n\t"
252 "and %%g1, %3, %%g1\n\t" 252 "and %%g1, %3, %%g1\n\t"
253 "cmp %%g1, %0\n\t" 253 "cmp %%g1, %0\n\t"
254 "bne,pn %%icc, 2f\n\t" 254 "bne,pn %%icc, 2f\n\t"
255 " andn %%g7, %1, %%g1\n\t" 255 " andn %%g7, %1, %%g1\n\t"
256 "casx [%2], %%g7, %%g1\n\t" 256 "casx [%2], %%g7, %%g1\n\t"
257 "cmp %%g7, %%g1\n\t" 257 "cmp %%g7, %%g1\n\t"
258 "bne,pn %%xcc, 1b\n\t" 258 "bne,pn %%xcc, 1b\n\t"
259 " nop\n" 259 " nop\n"
260 "2:" 260 "2:"
261 : /* no outputs */ 261 : /* no outputs */
262 : "r" (cpu), "r" (mask), "r" (&page->flags), 262 : "r" (cpu), "r" (mask), "r" (&page->flags),
263 "i" (PG_dcache_cpu_mask), 263 "i" (PG_dcache_cpu_mask),
264 "i" (PG_dcache_cpu_shift) 264 "i" (PG_dcache_cpu_shift)
265 : "g1", "g7"); 265 : "g1", "g7");
266 } 266 }
267 267
268 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte) 268 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
269 { 269 {
270 unsigned long tsb_addr = (unsigned long) ent; 270 unsigned long tsb_addr = (unsigned long) ent;
271 271
272 if (tlb_type == cheetah_plus || tlb_type == hypervisor) 272 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
273 tsb_addr = __pa(tsb_addr); 273 tsb_addr = __pa(tsb_addr);
274 274
275 __tsb_insert(tsb_addr, tag, pte); 275 __tsb_insert(tsb_addr, tag, pte);
276 } 276 }
277 277
278 unsigned long _PAGE_ALL_SZ_BITS __read_mostly; 278 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
279 279
280 static void flush_dcache(unsigned long pfn) 280 static void flush_dcache(unsigned long pfn)
281 { 281 {
282 struct page *page; 282 struct page *page;
283 283
284 page = pfn_to_page(pfn); 284 page = pfn_to_page(pfn);
285 if (page) { 285 if (page) {
286 unsigned long pg_flags; 286 unsigned long pg_flags;
287 287
288 pg_flags = page->flags; 288 pg_flags = page->flags;
289 if (pg_flags & (1UL << PG_dcache_dirty)) { 289 if (pg_flags & (1UL << PG_dcache_dirty)) {
290 int cpu = ((pg_flags >> PG_dcache_cpu_shift) & 290 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
291 PG_dcache_cpu_mask); 291 PG_dcache_cpu_mask);
292 int this_cpu = get_cpu(); 292 int this_cpu = get_cpu();
293 293
294 /* This is just to optimize away some function calls 294 /* This is just to optimize away some function calls
295 * in the SMP case. 295 * in the SMP case.
296 */ 296 */
297 if (cpu == this_cpu) 297 if (cpu == this_cpu)
298 flush_dcache_page_impl(page); 298 flush_dcache_page_impl(page);
299 else 299 else
300 smp_flush_dcache_page_impl(page, cpu); 300 smp_flush_dcache_page_impl(page, cpu);
301 301
302 clear_dcache_dirty_cpu(page, cpu); 302 clear_dcache_dirty_cpu(page, cpu);
303 303
304 put_cpu(); 304 put_cpu();
305 } 305 }
306 } 306 }
307 } 307 }
308 308
309 /* mm->context.lock must be held */ 309 /* mm->context.lock must be held */
310 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index, 310 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
311 unsigned long tsb_hash_shift, unsigned long address, 311 unsigned long tsb_hash_shift, unsigned long address,
312 unsigned long tte) 312 unsigned long tte)
313 { 313 {
314 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb; 314 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
315 unsigned long tag; 315 unsigned long tag;
316 316
317 if (unlikely(!tsb)) 317 if (unlikely(!tsb))
318 return; 318 return;
319 319
320 tsb += ((address >> tsb_hash_shift) & 320 tsb += ((address >> tsb_hash_shift) &
321 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL)); 321 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
322 tag = (address >> 22UL); 322 tag = (address >> 22UL);
323 tsb_insert(tsb, tag, tte); 323 tsb_insert(tsb, tag, tte);
324 } 324 }
325 325
326 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 326 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
327 static inline bool is_hugetlb_pte(pte_t pte) 327 static inline bool is_hugetlb_pte(pte_t pte)
328 { 328 {
329 if ((tlb_type == hypervisor && 329 if ((tlb_type == hypervisor &&
330 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) || 330 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
331 (tlb_type != hypervisor && 331 (tlb_type != hypervisor &&
332 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) 332 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
333 return true; 333 return true;
334 return false; 334 return false;
335 } 335 }
336 #endif 336 #endif
337 337
338 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) 338 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
339 { 339 {
340 struct mm_struct *mm; 340 struct mm_struct *mm;
341 unsigned long flags; 341 unsigned long flags;
342 pte_t pte = *ptep; 342 pte_t pte = *ptep;
343 343
344 if (tlb_type != hypervisor) { 344 if (tlb_type != hypervisor) {
345 unsigned long pfn = pte_pfn(pte); 345 unsigned long pfn = pte_pfn(pte);
346 346
347 if (pfn_valid(pfn)) 347 if (pfn_valid(pfn))
348 flush_dcache(pfn); 348 flush_dcache(pfn);
349 } 349 }
350 350
351 mm = vma->vm_mm; 351 mm = vma->vm_mm;
352 352
353 /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */
354 if (!pte_accessible(mm, pte))
355 return;
356
353 spin_lock_irqsave(&mm->context.lock, flags); 357 spin_lock_irqsave(&mm->context.lock, flags);
354 358
355 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 359 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
356 if (mm->context.huge_pte_count && is_hugetlb_pte(pte)) 360 if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
357 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT, 361 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
358 address, pte_val(pte)); 362 address, pte_val(pte));
359 else 363 else
360 #endif 364 #endif
361 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT, 365 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
362 address, pte_val(pte)); 366 address, pte_val(pte));
363 367
364 spin_unlock_irqrestore(&mm->context.lock, flags); 368 spin_unlock_irqrestore(&mm->context.lock, flags);
365 } 369 }
366 370
367 void flush_dcache_page(struct page *page) 371 void flush_dcache_page(struct page *page)
368 { 372 {
369 struct address_space *mapping; 373 struct address_space *mapping;
370 int this_cpu; 374 int this_cpu;
371 375
372 if (tlb_type == hypervisor) 376 if (tlb_type == hypervisor)
373 return; 377 return;
374 378
375 /* Do not bother with the expensive D-cache flush if it 379 /* Do not bother with the expensive D-cache flush if it
376 * is merely the zero page. The 'bigcore' testcase in GDB 380 * is merely the zero page. The 'bigcore' testcase in GDB
377 * causes this case to run millions of times. 381 * causes this case to run millions of times.
378 */ 382 */
379 if (page == ZERO_PAGE(0)) 383 if (page == ZERO_PAGE(0))
380 return; 384 return;
381 385
382 this_cpu = get_cpu(); 386 this_cpu = get_cpu();
383 387
384 mapping = page_mapping(page); 388 mapping = page_mapping(page);
385 if (mapping && !mapping_mapped(mapping)) { 389 if (mapping && !mapping_mapped(mapping)) {
386 int dirty = test_bit(PG_dcache_dirty, &page->flags); 390 int dirty = test_bit(PG_dcache_dirty, &page->flags);
387 if (dirty) { 391 if (dirty) {
388 int dirty_cpu = dcache_dirty_cpu(page); 392 int dirty_cpu = dcache_dirty_cpu(page);
389 393
390 if (dirty_cpu == this_cpu) 394 if (dirty_cpu == this_cpu)
391 goto out; 395 goto out;
392 smp_flush_dcache_page_impl(page, dirty_cpu); 396 smp_flush_dcache_page_impl(page, dirty_cpu);
393 } 397 }
394 set_dcache_dirty(page, this_cpu); 398 set_dcache_dirty(page, this_cpu);
395 } else { 399 } else {
396 /* We could delay the flush for the !page_mapping 400 /* We could delay the flush for the !page_mapping
397 * case too. But that case is for exec env/arg 401 * case too. But that case is for exec env/arg
398 * pages and those are %99 certainly going to get 402 * pages and those are %99 certainly going to get
399 * faulted into the tlb (and thus flushed) anyways. 403 * faulted into the tlb (and thus flushed) anyways.
400 */ 404 */
401 flush_dcache_page_impl(page); 405 flush_dcache_page_impl(page);
402 } 406 }
403 407
404 out: 408 out:
405 put_cpu(); 409 put_cpu();
406 } 410 }
407 EXPORT_SYMBOL(flush_dcache_page); 411 EXPORT_SYMBOL(flush_dcache_page);
408 412
409 void __kprobes flush_icache_range(unsigned long start, unsigned long end) 413 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
410 { 414 {
411 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */ 415 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
412 if (tlb_type == spitfire) { 416 if (tlb_type == spitfire) {
413 unsigned long kaddr; 417 unsigned long kaddr;
414 418
415 /* This code only runs on Spitfire cpus so this is 419 /* This code only runs on Spitfire cpus so this is
416 * why we can assume _PAGE_PADDR_4U. 420 * why we can assume _PAGE_PADDR_4U.
417 */ 421 */
418 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) { 422 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
419 unsigned long paddr, mask = _PAGE_PADDR_4U; 423 unsigned long paddr, mask = _PAGE_PADDR_4U;
420 424
421 if (kaddr >= PAGE_OFFSET) 425 if (kaddr >= PAGE_OFFSET)
422 paddr = kaddr & mask; 426 paddr = kaddr & mask;
423 else { 427 else {
424 pgd_t *pgdp = pgd_offset_k(kaddr); 428 pgd_t *pgdp = pgd_offset_k(kaddr);
425 pud_t *pudp = pud_offset(pgdp, kaddr); 429 pud_t *pudp = pud_offset(pgdp, kaddr);
426 pmd_t *pmdp = pmd_offset(pudp, kaddr); 430 pmd_t *pmdp = pmd_offset(pudp, kaddr);
427 pte_t *ptep = pte_offset_kernel(pmdp, kaddr); 431 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
428 432
429 paddr = pte_val(*ptep) & mask; 433 paddr = pte_val(*ptep) & mask;
430 } 434 }
431 __flush_icache_page(paddr); 435 __flush_icache_page(paddr);
432 } 436 }
433 } 437 }
434 } 438 }
435 EXPORT_SYMBOL(flush_icache_range); 439 EXPORT_SYMBOL(flush_icache_range);
436 440
437 void mmu_info(struct seq_file *m) 441 void mmu_info(struct seq_file *m)
438 { 442 {
439 static const char *pgsz_strings[] = { 443 static const char *pgsz_strings[] = {
440 "8K", "64K", "512K", "4MB", "32MB", 444 "8K", "64K", "512K", "4MB", "32MB",
441 "256MB", "2GB", "16GB", 445 "256MB", "2GB", "16GB",
442 }; 446 };
443 int i, printed; 447 int i, printed;
444 448
445 if (tlb_type == cheetah) 449 if (tlb_type == cheetah)
446 seq_printf(m, "MMU Type\t: Cheetah\n"); 450 seq_printf(m, "MMU Type\t: Cheetah\n");
447 else if (tlb_type == cheetah_plus) 451 else if (tlb_type == cheetah_plus)
448 seq_printf(m, "MMU Type\t: Cheetah+\n"); 452 seq_printf(m, "MMU Type\t: Cheetah+\n");
449 else if (tlb_type == spitfire) 453 else if (tlb_type == spitfire)
450 seq_printf(m, "MMU Type\t: Spitfire\n"); 454 seq_printf(m, "MMU Type\t: Spitfire\n");
451 else if (tlb_type == hypervisor) 455 else if (tlb_type == hypervisor)
452 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n"); 456 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
453 else 457 else
454 seq_printf(m, "MMU Type\t: ???\n"); 458 seq_printf(m, "MMU Type\t: ???\n");
455 459
456 seq_printf(m, "MMU PGSZs\t: "); 460 seq_printf(m, "MMU PGSZs\t: ");
457 printed = 0; 461 printed = 0;
458 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) { 462 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
459 if (cpu_pgsz_mask & (1UL << i)) { 463 if (cpu_pgsz_mask & (1UL << i)) {
460 seq_printf(m, "%s%s", 464 seq_printf(m, "%s%s",
461 printed ? "," : "", pgsz_strings[i]); 465 printed ? "," : "", pgsz_strings[i]);
462 printed++; 466 printed++;
463 } 467 }
464 } 468 }
465 seq_putc(m, '\n'); 469 seq_putc(m, '\n');
466 470
467 #ifdef CONFIG_DEBUG_DCFLUSH 471 #ifdef CONFIG_DEBUG_DCFLUSH
468 seq_printf(m, "DCPageFlushes\t: %d\n", 472 seq_printf(m, "DCPageFlushes\t: %d\n",
469 atomic_read(&dcpage_flushes)); 473 atomic_read(&dcpage_flushes));
470 #ifdef CONFIG_SMP 474 #ifdef CONFIG_SMP
471 seq_printf(m, "DCPageFlushesXC\t: %d\n", 475 seq_printf(m, "DCPageFlushesXC\t: %d\n",
472 atomic_read(&dcpage_flushes_xcall)); 476 atomic_read(&dcpage_flushes_xcall));
473 #endif /* CONFIG_SMP */ 477 #endif /* CONFIG_SMP */
474 #endif /* CONFIG_DEBUG_DCFLUSH */ 478 #endif /* CONFIG_DEBUG_DCFLUSH */
475 } 479 }
476 480
477 struct linux_prom_translation prom_trans[512] __read_mostly; 481 struct linux_prom_translation prom_trans[512] __read_mostly;
478 unsigned int prom_trans_ents __read_mostly; 482 unsigned int prom_trans_ents __read_mostly;
479 483
480 unsigned long kern_locked_tte_data; 484 unsigned long kern_locked_tte_data;
481 485
482 /* The obp translations are saved based on 8k pagesize, since obp can 486 /* The obp translations are saved based on 8k pagesize, since obp can
483 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS -> 487 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
484 * HI_OBP_ADDRESS range are handled in ktlb.S. 488 * HI_OBP_ADDRESS range are handled in ktlb.S.
485 */ 489 */
486 static inline int in_obp_range(unsigned long vaddr) 490 static inline int in_obp_range(unsigned long vaddr)
487 { 491 {
488 return (vaddr >= LOW_OBP_ADDRESS && 492 return (vaddr >= LOW_OBP_ADDRESS &&
489 vaddr < HI_OBP_ADDRESS); 493 vaddr < HI_OBP_ADDRESS);
490 } 494 }
491 495
492 static int cmp_ptrans(const void *a, const void *b) 496 static int cmp_ptrans(const void *a, const void *b)
493 { 497 {
494 const struct linux_prom_translation *x = a, *y = b; 498 const struct linux_prom_translation *x = a, *y = b;
495 499
496 if (x->virt > y->virt) 500 if (x->virt > y->virt)
497 return 1; 501 return 1;
498 if (x->virt < y->virt) 502 if (x->virt < y->virt)
499 return -1; 503 return -1;
500 return 0; 504 return 0;
501 } 505 }
502 506
503 /* Read OBP translations property into 'prom_trans[]'. */ 507 /* Read OBP translations property into 'prom_trans[]'. */
504 static void __init read_obp_translations(void) 508 static void __init read_obp_translations(void)
505 { 509 {
506 int n, node, ents, first, last, i; 510 int n, node, ents, first, last, i;
507 511
508 node = prom_finddevice("/virtual-memory"); 512 node = prom_finddevice("/virtual-memory");
509 n = prom_getproplen(node, "translations"); 513 n = prom_getproplen(node, "translations");
510 if (unlikely(n == 0 || n == -1)) { 514 if (unlikely(n == 0 || n == -1)) {
511 prom_printf("prom_mappings: Couldn't get size.\n"); 515 prom_printf("prom_mappings: Couldn't get size.\n");
512 prom_halt(); 516 prom_halt();
513 } 517 }
514 if (unlikely(n > sizeof(prom_trans))) { 518 if (unlikely(n > sizeof(prom_trans))) {
515 prom_printf("prom_mappings: Size %d is too big.\n", n); 519 prom_printf("prom_mappings: Size %d is too big.\n", n);
516 prom_halt(); 520 prom_halt();
517 } 521 }
518 522
519 if ((n = prom_getproperty(node, "translations", 523 if ((n = prom_getproperty(node, "translations",
520 (char *)&prom_trans[0], 524 (char *)&prom_trans[0],
521 sizeof(prom_trans))) == -1) { 525 sizeof(prom_trans))) == -1) {
522 prom_printf("prom_mappings: Couldn't get property.\n"); 526 prom_printf("prom_mappings: Couldn't get property.\n");
523 prom_halt(); 527 prom_halt();
524 } 528 }
525 529
526 n = n / sizeof(struct linux_prom_translation); 530 n = n / sizeof(struct linux_prom_translation);
527 531
528 ents = n; 532 ents = n;
529 533
530 sort(prom_trans, ents, sizeof(struct linux_prom_translation), 534 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
531 cmp_ptrans, NULL); 535 cmp_ptrans, NULL);
532 536
533 /* Now kick out all the non-OBP entries. */ 537 /* Now kick out all the non-OBP entries. */
534 for (i = 0; i < ents; i++) { 538 for (i = 0; i < ents; i++) {
535 if (in_obp_range(prom_trans[i].virt)) 539 if (in_obp_range(prom_trans[i].virt))
536 break; 540 break;
537 } 541 }
538 first = i; 542 first = i;
539 for (; i < ents; i++) { 543 for (; i < ents; i++) {
540 if (!in_obp_range(prom_trans[i].virt)) 544 if (!in_obp_range(prom_trans[i].virt))
541 break; 545 break;
542 } 546 }
543 last = i; 547 last = i;
544 548
545 for (i = 0; i < (last - first); i++) { 549 for (i = 0; i < (last - first); i++) {
546 struct linux_prom_translation *src = &prom_trans[i + first]; 550 struct linux_prom_translation *src = &prom_trans[i + first];
547 struct linux_prom_translation *dest = &prom_trans[i]; 551 struct linux_prom_translation *dest = &prom_trans[i];
548 552
549 *dest = *src; 553 *dest = *src;
550 } 554 }
551 for (; i < ents; i++) { 555 for (; i < ents; i++) {
552 struct linux_prom_translation *dest = &prom_trans[i]; 556 struct linux_prom_translation *dest = &prom_trans[i];
553 dest->virt = dest->size = dest->data = 0x0UL; 557 dest->virt = dest->size = dest->data = 0x0UL;
554 } 558 }
555 559
556 prom_trans_ents = last - first; 560 prom_trans_ents = last - first;
557 561
558 if (tlb_type == spitfire) { 562 if (tlb_type == spitfire) {
559 /* Clear diag TTE bits. */ 563 /* Clear diag TTE bits. */
560 for (i = 0; i < prom_trans_ents; i++) 564 for (i = 0; i < prom_trans_ents; i++)
561 prom_trans[i].data &= ~0x0003fe0000000000UL; 565 prom_trans[i].data &= ~0x0003fe0000000000UL;
562 } 566 }
563 567
564 /* Force execute bit on. */ 568 /* Force execute bit on. */
565 for (i = 0; i < prom_trans_ents; i++) 569 for (i = 0; i < prom_trans_ents; i++)
566 prom_trans[i].data |= (tlb_type == hypervisor ? 570 prom_trans[i].data |= (tlb_type == hypervisor ?
567 _PAGE_EXEC_4V : _PAGE_EXEC_4U); 571 _PAGE_EXEC_4V : _PAGE_EXEC_4U);
568 } 572 }
569 573
570 static void __init hypervisor_tlb_lock(unsigned long vaddr, 574 static void __init hypervisor_tlb_lock(unsigned long vaddr,
571 unsigned long pte, 575 unsigned long pte,
572 unsigned long mmu) 576 unsigned long mmu)
573 { 577 {
574 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu); 578 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
575 579
576 if (ret != 0) { 580 if (ret != 0) {
577 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: " 581 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
578 "errors with %lx\n", vaddr, 0, pte, mmu, ret); 582 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
579 prom_halt(); 583 prom_halt();
580 } 584 }
581 } 585 }
582 586
583 static unsigned long kern_large_tte(unsigned long paddr); 587 static unsigned long kern_large_tte(unsigned long paddr);
584 588
585 static void __init remap_kernel(void) 589 static void __init remap_kernel(void)
586 { 590 {
587 unsigned long phys_page, tte_vaddr, tte_data; 591 unsigned long phys_page, tte_vaddr, tte_data;
588 int i, tlb_ent = sparc64_highest_locked_tlbent(); 592 int i, tlb_ent = sparc64_highest_locked_tlbent();
589 593
590 tte_vaddr = (unsigned long) KERNBASE; 594 tte_vaddr = (unsigned long) KERNBASE;
591 phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB; 595 phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
592 tte_data = kern_large_tte(phys_page); 596 tte_data = kern_large_tte(phys_page);
593 597
594 kern_locked_tte_data = tte_data; 598 kern_locked_tte_data = tte_data;
595 599
596 /* Now lock us into the TLBs via Hypervisor or OBP. */ 600 /* Now lock us into the TLBs via Hypervisor or OBP. */
597 if (tlb_type == hypervisor) { 601 if (tlb_type == hypervisor) {
598 for (i = 0; i < num_kernel_image_mappings; i++) { 602 for (i = 0; i < num_kernel_image_mappings; i++) {
599 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU); 603 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
600 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU); 604 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
601 tte_vaddr += 0x400000; 605 tte_vaddr += 0x400000;
602 tte_data += 0x400000; 606 tte_data += 0x400000;
603 } 607 }
604 } else { 608 } else {
605 for (i = 0; i < num_kernel_image_mappings; i++) { 609 for (i = 0; i < num_kernel_image_mappings; i++) {
606 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr); 610 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
607 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr); 611 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
608 tte_vaddr += 0x400000; 612 tte_vaddr += 0x400000;
609 tte_data += 0x400000; 613 tte_data += 0x400000;
610 } 614 }
611 sparc64_highest_unlocked_tlb_ent = tlb_ent - i; 615 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
612 } 616 }
613 if (tlb_type == cheetah_plus) { 617 if (tlb_type == cheetah_plus) {
614 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 | 618 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
615 CTX_CHEETAH_PLUS_NUC); 619 CTX_CHEETAH_PLUS_NUC);
616 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC; 620 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
617 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0; 621 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
618 } 622 }
619 } 623 }
620 624
621 625
622 static void __init inherit_prom_mappings(void) 626 static void __init inherit_prom_mappings(void)
623 { 627 {
624 /* Now fixup OBP's idea about where we really are mapped. */ 628 /* Now fixup OBP's idea about where we really are mapped. */
625 printk("Remapping the kernel... "); 629 printk("Remapping the kernel... ");
626 remap_kernel(); 630 remap_kernel();
627 printk("done.\n"); 631 printk("done.\n");
628 } 632 }
629 633
630 void prom_world(int enter) 634 void prom_world(int enter)
631 { 635 {
632 if (!enter) 636 if (!enter)
633 set_fs(get_fs()); 637 set_fs(get_fs());
634 638
635 __asm__ __volatile__("flushw"); 639 __asm__ __volatile__("flushw");
636 } 640 }
637 641
638 void __flush_dcache_range(unsigned long start, unsigned long end) 642 void __flush_dcache_range(unsigned long start, unsigned long end)
639 { 643 {
640 unsigned long va; 644 unsigned long va;
641 645
642 if (tlb_type == spitfire) { 646 if (tlb_type == spitfire) {
643 int n = 0; 647 int n = 0;
644 648
645 for (va = start; va < end; va += 32) { 649 for (va = start; va < end; va += 32) {
646 spitfire_put_dcache_tag(va & 0x3fe0, 0x0); 650 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
647 if (++n >= 512) 651 if (++n >= 512)
648 break; 652 break;
649 } 653 }
650 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 654 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
651 start = __pa(start); 655 start = __pa(start);
652 end = __pa(end); 656 end = __pa(end);
653 for (va = start; va < end; va += 32) 657 for (va = start; va < end; va += 32)
654 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 658 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
655 "membar #Sync" 659 "membar #Sync"
656 : /* no outputs */ 660 : /* no outputs */
657 : "r" (va), 661 : "r" (va),
658 "i" (ASI_DCACHE_INVALIDATE)); 662 "i" (ASI_DCACHE_INVALIDATE));
659 } 663 }
660 } 664 }
661 EXPORT_SYMBOL(__flush_dcache_range); 665 EXPORT_SYMBOL(__flush_dcache_range);
662 666
663 /* get_new_mmu_context() uses "cache + 1". */ 667 /* get_new_mmu_context() uses "cache + 1". */
664 DEFINE_SPINLOCK(ctx_alloc_lock); 668 DEFINE_SPINLOCK(ctx_alloc_lock);
665 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1; 669 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
666 #define MAX_CTX_NR (1UL << CTX_NR_BITS) 670 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
667 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR) 671 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
668 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR); 672 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
669 673
670 /* Caller does TLB context flushing on local CPU if necessary. 674 /* Caller does TLB context flushing on local CPU if necessary.
671 * The caller also ensures that CTX_VALID(mm->context) is false. 675 * The caller also ensures that CTX_VALID(mm->context) is false.
672 * 676 *
673 * We must be careful about boundary cases so that we never 677 * We must be careful about boundary cases so that we never
674 * let the user have CTX 0 (nucleus) or we ever use a CTX 678 * let the user have CTX 0 (nucleus) or we ever use a CTX
675 * version of zero (and thus NO_CONTEXT would not be caught 679 * version of zero (and thus NO_CONTEXT would not be caught
676 * by version mis-match tests in mmu_context.h). 680 * by version mis-match tests in mmu_context.h).
677 * 681 *
678 * Always invoked with interrupts disabled. 682 * Always invoked with interrupts disabled.
679 */ 683 */
680 void get_new_mmu_context(struct mm_struct *mm) 684 void get_new_mmu_context(struct mm_struct *mm)
681 { 685 {
682 unsigned long ctx, new_ctx; 686 unsigned long ctx, new_ctx;
683 unsigned long orig_pgsz_bits; 687 unsigned long orig_pgsz_bits;
684 int new_version; 688 int new_version;
685 689
686 spin_lock(&ctx_alloc_lock); 690 spin_lock(&ctx_alloc_lock);
687 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK); 691 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
688 ctx = (tlb_context_cache + 1) & CTX_NR_MASK; 692 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
689 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx); 693 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
690 new_version = 0; 694 new_version = 0;
691 if (new_ctx >= (1 << CTX_NR_BITS)) { 695 if (new_ctx >= (1 << CTX_NR_BITS)) {
692 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1); 696 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
693 if (new_ctx >= ctx) { 697 if (new_ctx >= ctx) {
694 int i; 698 int i;
695 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) + 699 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
696 CTX_FIRST_VERSION; 700 CTX_FIRST_VERSION;
697 if (new_ctx == 1) 701 if (new_ctx == 1)
698 new_ctx = CTX_FIRST_VERSION; 702 new_ctx = CTX_FIRST_VERSION;
699 703
700 /* Don't call memset, for 16 entries that's just 704 /* Don't call memset, for 16 entries that's just
701 * plain silly... 705 * plain silly...
702 */ 706 */
703 mmu_context_bmap[0] = 3; 707 mmu_context_bmap[0] = 3;
704 mmu_context_bmap[1] = 0; 708 mmu_context_bmap[1] = 0;
705 mmu_context_bmap[2] = 0; 709 mmu_context_bmap[2] = 0;
706 mmu_context_bmap[3] = 0; 710 mmu_context_bmap[3] = 0;
707 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) { 711 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
708 mmu_context_bmap[i + 0] = 0; 712 mmu_context_bmap[i + 0] = 0;
709 mmu_context_bmap[i + 1] = 0; 713 mmu_context_bmap[i + 1] = 0;
710 mmu_context_bmap[i + 2] = 0; 714 mmu_context_bmap[i + 2] = 0;
711 mmu_context_bmap[i + 3] = 0; 715 mmu_context_bmap[i + 3] = 0;
712 } 716 }
713 new_version = 1; 717 new_version = 1;
714 goto out; 718 goto out;
715 } 719 }
716 } 720 }
717 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63)); 721 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
718 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK); 722 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
719 out: 723 out:
720 tlb_context_cache = new_ctx; 724 tlb_context_cache = new_ctx;
721 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits; 725 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
722 spin_unlock(&ctx_alloc_lock); 726 spin_unlock(&ctx_alloc_lock);
723 727
724 if (unlikely(new_version)) 728 if (unlikely(new_version))
725 smp_new_mmu_context_version(); 729 smp_new_mmu_context_version();
726 } 730 }
727 731
728 static int numa_enabled = 1; 732 static int numa_enabled = 1;
729 static int numa_debug; 733 static int numa_debug;
730 734
731 static int __init early_numa(char *p) 735 static int __init early_numa(char *p)
732 { 736 {
733 if (!p) 737 if (!p)
734 return 0; 738 return 0;
735 739
736 if (strstr(p, "off")) 740 if (strstr(p, "off"))
737 numa_enabled = 0; 741 numa_enabled = 0;
738 742
739 if (strstr(p, "debug")) 743 if (strstr(p, "debug"))
740 numa_debug = 1; 744 numa_debug = 1;
741 745
742 return 0; 746 return 0;
743 } 747 }
744 early_param("numa", early_numa); 748 early_param("numa", early_numa);
745 749
746 #define numadbg(f, a...) \ 750 #define numadbg(f, a...) \
747 do { if (numa_debug) \ 751 do { if (numa_debug) \
748 printk(KERN_INFO f, ## a); \ 752 printk(KERN_INFO f, ## a); \
749 } while (0) 753 } while (0)
750 754
751 static void __init find_ramdisk(unsigned long phys_base) 755 static void __init find_ramdisk(unsigned long phys_base)
752 { 756 {
753 #ifdef CONFIG_BLK_DEV_INITRD 757 #ifdef CONFIG_BLK_DEV_INITRD
754 if (sparc_ramdisk_image || sparc_ramdisk_image64) { 758 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
755 unsigned long ramdisk_image; 759 unsigned long ramdisk_image;
756 760
757 /* Older versions of the bootloader only supported a 761 /* Older versions of the bootloader only supported a
758 * 32-bit physical address for the ramdisk image 762 * 32-bit physical address for the ramdisk image
759 * location, stored at sparc_ramdisk_image. Newer 763 * location, stored at sparc_ramdisk_image. Newer
760 * SILO versions set sparc_ramdisk_image to zero and 764 * SILO versions set sparc_ramdisk_image to zero and
761 * provide a full 64-bit physical address at 765 * provide a full 64-bit physical address at
762 * sparc_ramdisk_image64. 766 * sparc_ramdisk_image64.
763 */ 767 */
764 ramdisk_image = sparc_ramdisk_image; 768 ramdisk_image = sparc_ramdisk_image;
765 if (!ramdisk_image) 769 if (!ramdisk_image)
766 ramdisk_image = sparc_ramdisk_image64; 770 ramdisk_image = sparc_ramdisk_image64;
767 771
768 /* Another bootloader quirk. The bootloader normalizes 772 /* Another bootloader quirk. The bootloader normalizes
769 * the physical address to KERNBASE, so we have to 773 * the physical address to KERNBASE, so we have to
770 * factor that back out and add in the lowest valid 774 * factor that back out and add in the lowest valid
771 * physical page address to get the true physical address. 775 * physical page address to get the true physical address.
772 */ 776 */
773 ramdisk_image -= KERNBASE; 777 ramdisk_image -= KERNBASE;
774 ramdisk_image += phys_base; 778 ramdisk_image += phys_base;
775 779
776 numadbg("Found ramdisk at physical address 0x%lx, size %u\n", 780 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
777 ramdisk_image, sparc_ramdisk_size); 781 ramdisk_image, sparc_ramdisk_size);
778 782
779 initrd_start = ramdisk_image; 783 initrd_start = ramdisk_image;
780 initrd_end = ramdisk_image + sparc_ramdisk_size; 784 initrd_end = ramdisk_image + sparc_ramdisk_size;
781 785
782 memblock_reserve(initrd_start, sparc_ramdisk_size); 786 memblock_reserve(initrd_start, sparc_ramdisk_size);
783 787
784 initrd_start += PAGE_OFFSET; 788 initrd_start += PAGE_OFFSET;
785 initrd_end += PAGE_OFFSET; 789 initrd_end += PAGE_OFFSET;
786 } 790 }
787 #endif 791 #endif
788 } 792 }
789 793
790 struct node_mem_mask { 794 struct node_mem_mask {
791 unsigned long mask; 795 unsigned long mask;
792 unsigned long val; 796 unsigned long val;
793 }; 797 };
794 static struct node_mem_mask node_masks[MAX_NUMNODES]; 798 static struct node_mem_mask node_masks[MAX_NUMNODES];
795 static int num_node_masks; 799 static int num_node_masks;
796 800
797 int numa_cpu_lookup_table[NR_CPUS]; 801 int numa_cpu_lookup_table[NR_CPUS];
798 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; 802 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
799 803
800 #ifdef CONFIG_NEED_MULTIPLE_NODES 804 #ifdef CONFIG_NEED_MULTIPLE_NODES
801 805
802 struct mdesc_mblock { 806 struct mdesc_mblock {
803 u64 base; 807 u64 base;
804 u64 size; 808 u64 size;
805 u64 offset; /* RA-to-PA */ 809 u64 offset; /* RA-to-PA */
806 }; 810 };
807 static struct mdesc_mblock *mblocks; 811 static struct mdesc_mblock *mblocks;
808 static int num_mblocks; 812 static int num_mblocks;
809 813
810 static unsigned long ra_to_pa(unsigned long addr) 814 static unsigned long ra_to_pa(unsigned long addr)
811 { 815 {
812 int i; 816 int i;
813 817
814 for (i = 0; i < num_mblocks; i++) { 818 for (i = 0; i < num_mblocks; i++) {
815 struct mdesc_mblock *m = &mblocks[i]; 819 struct mdesc_mblock *m = &mblocks[i];
816 820
817 if (addr >= m->base && 821 if (addr >= m->base &&
818 addr < (m->base + m->size)) { 822 addr < (m->base + m->size)) {
819 addr += m->offset; 823 addr += m->offset;
820 break; 824 break;
821 } 825 }
822 } 826 }
823 return addr; 827 return addr;
824 } 828 }
825 829
826 static int find_node(unsigned long addr) 830 static int find_node(unsigned long addr)
827 { 831 {
828 int i; 832 int i;
829 833
830 addr = ra_to_pa(addr); 834 addr = ra_to_pa(addr);
831 for (i = 0; i < num_node_masks; i++) { 835 for (i = 0; i < num_node_masks; i++) {
832 struct node_mem_mask *p = &node_masks[i]; 836 struct node_mem_mask *p = &node_masks[i];
833 837
834 if ((addr & p->mask) == p->val) 838 if ((addr & p->mask) == p->val)
835 return i; 839 return i;
836 } 840 }
837 return -1; 841 return -1;
838 } 842 }
839 843
840 static u64 memblock_nid_range(u64 start, u64 end, int *nid) 844 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
841 { 845 {
842 *nid = find_node(start); 846 *nid = find_node(start);
843 start += PAGE_SIZE; 847 start += PAGE_SIZE;
844 while (start < end) { 848 while (start < end) {
845 int n = find_node(start); 849 int n = find_node(start);
846 850
847 if (n != *nid) 851 if (n != *nid)
848 break; 852 break;
849 start += PAGE_SIZE; 853 start += PAGE_SIZE;
850 } 854 }
851 855
852 if (start > end) 856 if (start > end)
853 start = end; 857 start = end;
854 858
855 return start; 859 return start;
856 } 860 }
857 #endif 861 #endif
858 862
859 /* This must be invoked after performing all of the necessary 863 /* This must be invoked after performing all of the necessary
860 * memblock_set_node() calls for 'nid'. We need to be able to get 864 * memblock_set_node() calls for 'nid'. We need to be able to get
861 * correct data from get_pfn_range_for_nid(). 865 * correct data from get_pfn_range_for_nid().
862 */ 866 */
863 static void __init allocate_node_data(int nid) 867 static void __init allocate_node_data(int nid)
864 { 868 {
865 struct pglist_data *p; 869 struct pglist_data *p;
866 unsigned long start_pfn, end_pfn; 870 unsigned long start_pfn, end_pfn;
867 #ifdef CONFIG_NEED_MULTIPLE_NODES 871 #ifdef CONFIG_NEED_MULTIPLE_NODES
868 unsigned long paddr; 872 unsigned long paddr;
869 873
870 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid); 874 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
871 if (!paddr) { 875 if (!paddr) {
872 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid); 876 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
873 prom_halt(); 877 prom_halt();
874 } 878 }
875 NODE_DATA(nid) = __va(paddr); 879 NODE_DATA(nid) = __va(paddr);
876 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); 880 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
877 881
878 NODE_DATA(nid)->node_id = nid; 882 NODE_DATA(nid)->node_id = nid;
879 #endif 883 #endif
880 884
881 p = NODE_DATA(nid); 885 p = NODE_DATA(nid);
882 886
883 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 887 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
884 p->node_start_pfn = start_pfn; 888 p->node_start_pfn = start_pfn;
885 p->node_spanned_pages = end_pfn - start_pfn; 889 p->node_spanned_pages = end_pfn - start_pfn;
886 } 890 }
887 891
888 static void init_node_masks_nonnuma(void) 892 static void init_node_masks_nonnuma(void)
889 { 893 {
890 int i; 894 int i;
891 895
892 numadbg("Initializing tables for non-numa.\n"); 896 numadbg("Initializing tables for non-numa.\n");
893 897
894 node_masks[0].mask = node_masks[0].val = 0; 898 node_masks[0].mask = node_masks[0].val = 0;
895 num_node_masks = 1; 899 num_node_masks = 1;
896 900
897 for (i = 0; i < NR_CPUS; i++) 901 for (i = 0; i < NR_CPUS; i++)
898 numa_cpu_lookup_table[i] = 0; 902 numa_cpu_lookup_table[i] = 0;
899 903
900 cpumask_setall(&numa_cpumask_lookup_table[0]); 904 cpumask_setall(&numa_cpumask_lookup_table[0]);
901 } 905 }
902 906
903 #ifdef CONFIG_NEED_MULTIPLE_NODES 907 #ifdef CONFIG_NEED_MULTIPLE_NODES
904 struct pglist_data *node_data[MAX_NUMNODES]; 908 struct pglist_data *node_data[MAX_NUMNODES];
905 909
906 EXPORT_SYMBOL(numa_cpu_lookup_table); 910 EXPORT_SYMBOL(numa_cpu_lookup_table);
907 EXPORT_SYMBOL(numa_cpumask_lookup_table); 911 EXPORT_SYMBOL(numa_cpumask_lookup_table);
908 EXPORT_SYMBOL(node_data); 912 EXPORT_SYMBOL(node_data);
909 913
910 struct mdesc_mlgroup { 914 struct mdesc_mlgroup {
911 u64 node; 915 u64 node;
912 u64 latency; 916 u64 latency;
913 u64 match; 917 u64 match;
914 u64 mask; 918 u64 mask;
915 }; 919 };
916 static struct mdesc_mlgroup *mlgroups; 920 static struct mdesc_mlgroup *mlgroups;
917 static int num_mlgroups; 921 static int num_mlgroups;
918 922
919 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio, 923 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
920 u32 cfg_handle) 924 u32 cfg_handle)
921 { 925 {
922 u64 arc; 926 u64 arc;
923 927
924 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) { 928 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
925 u64 target = mdesc_arc_target(md, arc); 929 u64 target = mdesc_arc_target(md, arc);
926 const u64 *val; 930 const u64 *val;
927 931
928 val = mdesc_get_property(md, target, 932 val = mdesc_get_property(md, target,
929 "cfg-handle", NULL); 933 "cfg-handle", NULL);
930 if (val && *val == cfg_handle) 934 if (val && *val == cfg_handle)
931 return 0; 935 return 0;
932 } 936 }
933 return -ENODEV; 937 return -ENODEV;
934 } 938 }
935 939
936 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp, 940 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
937 u32 cfg_handle) 941 u32 cfg_handle)
938 { 942 {
939 u64 arc, candidate, best_latency = ~(u64)0; 943 u64 arc, candidate, best_latency = ~(u64)0;
940 944
941 candidate = MDESC_NODE_NULL; 945 candidate = MDESC_NODE_NULL;
942 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { 946 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
943 u64 target = mdesc_arc_target(md, arc); 947 u64 target = mdesc_arc_target(md, arc);
944 const char *name = mdesc_node_name(md, target); 948 const char *name = mdesc_node_name(md, target);
945 const u64 *val; 949 const u64 *val;
946 950
947 if (strcmp(name, "pio-latency-group")) 951 if (strcmp(name, "pio-latency-group"))
948 continue; 952 continue;
949 953
950 val = mdesc_get_property(md, target, "latency", NULL); 954 val = mdesc_get_property(md, target, "latency", NULL);
951 if (!val) 955 if (!val)
952 continue; 956 continue;
953 957
954 if (*val < best_latency) { 958 if (*val < best_latency) {
955 candidate = target; 959 candidate = target;
956 best_latency = *val; 960 best_latency = *val;
957 } 961 }
958 } 962 }
959 963
960 if (candidate == MDESC_NODE_NULL) 964 if (candidate == MDESC_NODE_NULL)
961 return -ENODEV; 965 return -ENODEV;
962 966
963 return scan_pio_for_cfg_handle(md, candidate, cfg_handle); 967 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
964 } 968 }
965 969
966 int of_node_to_nid(struct device_node *dp) 970 int of_node_to_nid(struct device_node *dp)
967 { 971 {
968 const struct linux_prom64_registers *regs; 972 const struct linux_prom64_registers *regs;
969 struct mdesc_handle *md; 973 struct mdesc_handle *md;
970 u32 cfg_handle; 974 u32 cfg_handle;
971 int count, nid; 975 int count, nid;
972 u64 grp; 976 u64 grp;
973 977
974 /* This is the right thing to do on currently supported 978 /* This is the right thing to do on currently supported
975 * SUN4U NUMA platforms as well, as the PCI controller does 979 * SUN4U NUMA platforms as well, as the PCI controller does
976 * not sit behind any particular memory controller. 980 * not sit behind any particular memory controller.
977 */ 981 */
978 if (!mlgroups) 982 if (!mlgroups)
979 return -1; 983 return -1;
980 984
981 regs = of_get_property(dp, "reg", NULL); 985 regs = of_get_property(dp, "reg", NULL);
982 if (!regs) 986 if (!regs)
983 return -1; 987 return -1;
984 988
985 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff; 989 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
986 990
987 md = mdesc_grab(); 991 md = mdesc_grab();
988 992
989 count = 0; 993 count = 0;
990 nid = -1; 994 nid = -1;
991 mdesc_for_each_node_by_name(md, grp, "group") { 995 mdesc_for_each_node_by_name(md, grp, "group") {
992 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) { 996 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
993 nid = count; 997 nid = count;
994 break; 998 break;
995 } 999 }
996 count++; 1000 count++;
997 } 1001 }
998 1002
999 mdesc_release(md); 1003 mdesc_release(md);
1000 1004
1001 return nid; 1005 return nid;
1002 } 1006 }
1003 1007
1004 static void __init add_node_ranges(void) 1008 static void __init add_node_ranges(void)
1005 { 1009 {
1006 struct memblock_region *reg; 1010 struct memblock_region *reg;
1007 1011
1008 for_each_memblock(memory, reg) { 1012 for_each_memblock(memory, reg) {
1009 unsigned long size = reg->size; 1013 unsigned long size = reg->size;
1010 unsigned long start, end; 1014 unsigned long start, end;
1011 1015
1012 start = reg->base; 1016 start = reg->base;
1013 end = start + size; 1017 end = start + size;
1014 while (start < end) { 1018 while (start < end) {
1015 unsigned long this_end; 1019 unsigned long this_end;
1016 int nid; 1020 int nid;
1017 1021
1018 this_end = memblock_nid_range(start, end, &nid); 1022 this_end = memblock_nid_range(start, end, &nid);
1019 1023
1020 numadbg("Setting memblock NUMA node nid[%d] " 1024 numadbg("Setting memblock NUMA node nid[%d] "
1021 "start[%lx] end[%lx]\n", 1025 "start[%lx] end[%lx]\n",
1022 nid, start, this_end); 1026 nid, start, this_end);
1023 1027
1024 memblock_set_node(start, this_end - start, 1028 memblock_set_node(start, this_end - start,
1025 &memblock.memory, nid); 1029 &memblock.memory, nid);
1026 start = this_end; 1030 start = this_end;
1027 } 1031 }
1028 } 1032 }
1029 } 1033 }
1030 1034
1031 static int __init grab_mlgroups(struct mdesc_handle *md) 1035 static int __init grab_mlgroups(struct mdesc_handle *md)
1032 { 1036 {
1033 unsigned long paddr; 1037 unsigned long paddr;
1034 int count = 0; 1038 int count = 0;
1035 u64 node; 1039 u64 node;
1036 1040
1037 mdesc_for_each_node_by_name(md, node, "memory-latency-group") 1041 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1038 count++; 1042 count++;
1039 if (!count) 1043 if (!count)
1040 return -ENOENT; 1044 return -ENOENT;
1041 1045
1042 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup), 1046 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1043 SMP_CACHE_BYTES); 1047 SMP_CACHE_BYTES);
1044 if (!paddr) 1048 if (!paddr)
1045 return -ENOMEM; 1049 return -ENOMEM;
1046 1050
1047 mlgroups = __va(paddr); 1051 mlgroups = __va(paddr);
1048 num_mlgroups = count; 1052 num_mlgroups = count;
1049 1053
1050 count = 0; 1054 count = 0;
1051 mdesc_for_each_node_by_name(md, node, "memory-latency-group") { 1055 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1052 struct mdesc_mlgroup *m = &mlgroups[count++]; 1056 struct mdesc_mlgroup *m = &mlgroups[count++];
1053 const u64 *val; 1057 const u64 *val;
1054 1058
1055 m->node = node; 1059 m->node = node;
1056 1060
1057 val = mdesc_get_property(md, node, "latency", NULL); 1061 val = mdesc_get_property(md, node, "latency", NULL);
1058 m->latency = *val; 1062 m->latency = *val;
1059 val = mdesc_get_property(md, node, "address-match", NULL); 1063 val = mdesc_get_property(md, node, "address-match", NULL);
1060 m->match = *val; 1064 m->match = *val;
1061 val = mdesc_get_property(md, node, "address-mask", NULL); 1065 val = mdesc_get_property(md, node, "address-mask", NULL);
1062 m->mask = *val; 1066 m->mask = *val;
1063 1067
1064 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] " 1068 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1065 "match[%llx] mask[%llx]\n", 1069 "match[%llx] mask[%llx]\n",
1066 count - 1, m->node, m->latency, m->match, m->mask); 1070 count - 1, m->node, m->latency, m->match, m->mask);
1067 } 1071 }
1068 1072
1069 return 0; 1073 return 0;
1070 } 1074 }
1071 1075
1072 static int __init grab_mblocks(struct mdesc_handle *md) 1076 static int __init grab_mblocks(struct mdesc_handle *md)
1073 { 1077 {
1074 unsigned long paddr; 1078 unsigned long paddr;
1075 int count = 0; 1079 int count = 0;
1076 u64 node; 1080 u64 node;
1077 1081
1078 mdesc_for_each_node_by_name(md, node, "mblock") 1082 mdesc_for_each_node_by_name(md, node, "mblock")
1079 count++; 1083 count++;
1080 if (!count) 1084 if (!count)
1081 return -ENOENT; 1085 return -ENOENT;
1082 1086
1083 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock), 1087 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1084 SMP_CACHE_BYTES); 1088 SMP_CACHE_BYTES);
1085 if (!paddr) 1089 if (!paddr)
1086 return -ENOMEM; 1090 return -ENOMEM;
1087 1091
1088 mblocks = __va(paddr); 1092 mblocks = __va(paddr);
1089 num_mblocks = count; 1093 num_mblocks = count;
1090 1094
1091 count = 0; 1095 count = 0;
1092 mdesc_for_each_node_by_name(md, node, "mblock") { 1096 mdesc_for_each_node_by_name(md, node, "mblock") {
1093 struct mdesc_mblock *m = &mblocks[count++]; 1097 struct mdesc_mblock *m = &mblocks[count++];
1094 const u64 *val; 1098 const u64 *val;
1095 1099
1096 val = mdesc_get_property(md, node, "base", NULL); 1100 val = mdesc_get_property(md, node, "base", NULL);
1097 m->base = *val; 1101 m->base = *val;
1098 val = mdesc_get_property(md, node, "size", NULL); 1102 val = mdesc_get_property(md, node, "size", NULL);
1099 m->size = *val; 1103 m->size = *val;
1100 val = mdesc_get_property(md, node, 1104 val = mdesc_get_property(md, node,
1101 "address-congruence-offset", NULL); 1105 "address-congruence-offset", NULL);
1102 1106
1103 /* The address-congruence-offset property is optional. 1107 /* The address-congruence-offset property is optional.
1104 * Explicity zero it be identifty this. 1108 * Explicity zero it be identifty this.
1105 */ 1109 */
1106 if (val) 1110 if (val)
1107 m->offset = *val; 1111 m->offset = *val;
1108 else 1112 else
1109 m->offset = 0UL; 1113 m->offset = 0UL;
1110 1114
1111 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n", 1115 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1112 count - 1, m->base, m->size, m->offset); 1116 count - 1, m->base, m->size, m->offset);
1113 } 1117 }
1114 1118
1115 return 0; 1119 return 0;
1116 } 1120 }
1117 1121
1118 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md, 1122 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1119 u64 grp, cpumask_t *mask) 1123 u64 grp, cpumask_t *mask)
1120 { 1124 {
1121 u64 arc; 1125 u64 arc;
1122 1126
1123 cpumask_clear(mask); 1127 cpumask_clear(mask);
1124 1128
1125 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) { 1129 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1126 u64 target = mdesc_arc_target(md, arc); 1130 u64 target = mdesc_arc_target(md, arc);
1127 const char *name = mdesc_node_name(md, target); 1131 const char *name = mdesc_node_name(md, target);
1128 const u64 *id; 1132 const u64 *id;
1129 1133
1130 if (strcmp(name, "cpu")) 1134 if (strcmp(name, "cpu"))
1131 continue; 1135 continue;
1132 id = mdesc_get_property(md, target, "id", NULL); 1136 id = mdesc_get_property(md, target, "id", NULL);
1133 if (*id < nr_cpu_ids) 1137 if (*id < nr_cpu_ids)
1134 cpumask_set_cpu(*id, mask); 1138 cpumask_set_cpu(*id, mask);
1135 } 1139 }
1136 } 1140 }
1137 1141
1138 static struct mdesc_mlgroup * __init find_mlgroup(u64 node) 1142 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1139 { 1143 {
1140 int i; 1144 int i;
1141 1145
1142 for (i = 0; i < num_mlgroups; i++) { 1146 for (i = 0; i < num_mlgroups; i++) {
1143 struct mdesc_mlgroup *m = &mlgroups[i]; 1147 struct mdesc_mlgroup *m = &mlgroups[i];
1144 if (m->node == node) 1148 if (m->node == node)
1145 return m; 1149 return m;
1146 } 1150 }
1147 return NULL; 1151 return NULL;
1148 } 1152 }
1149 1153
1150 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp, 1154 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1151 int index) 1155 int index)
1152 { 1156 {
1153 struct mdesc_mlgroup *candidate = NULL; 1157 struct mdesc_mlgroup *candidate = NULL;
1154 u64 arc, best_latency = ~(u64)0; 1158 u64 arc, best_latency = ~(u64)0;
1155 struct node_mem_mask *n; 1159 struct node_mem_mask *n;
1156 1160
1157 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { 1161 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1158 u64 target = mdesc_arc_target(md, arc); 1162 u64 target = mdesc_arc_target(md, arc);
1159 struct mdesc_mlgroup *m = find_mlgroup(target); 1163 struct mdesc_mlgroup *m = find_mlgroup(target);
1160 if (!m) 1164 if (!m)
1161 continue; 1165 continue;
1162 if (m->latency < best_latency) { 1166 if (m->latency < best_latency) {
1163 candidate = m; 1167 candidate = m;
1164 best_latency = m->latency; 1168 best_latency = m->latency;
1165 } 1169 }
1166 } 1170 }
1167 if (!candidate) 1171 if (!candidate)
1168 return -ENOENT; 1172 return -ENOENT;
1169 1173
1170 if (num_node_masks != index) { 1174 if (num_node_masks != index) {
1171 printk(KERN_ERR "Inconsistent NUMA state, " 1175 printk(KERN_ERR "Inconsistent NUMA state, "
1172 "index[%d] != num_node_masks[%d]\n", 1176 "index[%d] != num_node_masks[%d]\n",
1173 index, num_node_masks); 1177 index, num_node_masks);
1174 return -EINVAL; 1178 return -EINVAL;
1175 } 1179 }
1176 1180
1177 n = &node_masks[num_node_masks++]; 1181 n = &node_masks[num_node_masks++];
1178 1182
1179 n->mask = candidate->mask; 1183 n->mask = candidate->mask;
1180 n->val = candidate->match; 1184 n->val = candidate->match;
1181 1185
1182 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n", 1186 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1183 index, n->mask, n->val, candidate->latency); 1187 index, n->mask, n->val, candidate->latency);
1184 1188
1185 return 0; 1189 return 0;
1186 } 1190 }
1187 1191
1188 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp, 1192 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1189 int index) 1193 int index)
1190 { 1194 {
1191 cpumask_t mask; 1195 cpumask_t mask;
1192 int cpu; 1196 int cpu;
1193 1197
1194 numa_parse_mdesc_group_cpus(md, grp, &mask); 1198 numa_parse_mdesc_group_cpus(md, grp, &mask);
1195 1199
1196 for_each_cpu(cpu, &mask) 1200 for_each_cpu(cpu, &mask)
1197 numa_cpu_lookup_table[cpu] = index; 1201 numa_cpu_lookup_table[cpu] = index;
1198 cpumask_copy(&numa_cpumask_lookup_table[index], &mask); 1202 cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1199 1203
1200 if (numa_debug) { 1204 if (numa_debug) {
1201 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index); 1205 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1202 for_each_cpu(cpu, &mask) 1206 for_each_cpu(cpu, &mask)
1203 printk("%d ", cpu); 1207 printk("%d ", cpu);
1204 printk("]\n"); 1208 printk("]\n");
1205 } 1209 }
1206 1210
1207 return numa_attach_mlgroup(md, grp, index); 1211 return numa_attach_mlgroup(md, grp, index);
1208 } 1212 }
1209 1213
1210 static int __init numa_parse_mdesc(void) 1214 static int __init numa_parse_mdesc(void)
1211 { 1215 {
1212 struct mdesc_handle *md = mdesc_grab(); 1216 struct mdesc_handle *md = mdesc_grab();
1213 int i, err, count; 1217 int i, err, count;
1214 u64 node; 1218 u64 node;
1215 1219
1216 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups"); 1220 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1217 if (node == MDESC_NODE_NULL) { 1221 if (node == MDESC_NODE_NULL) {
1218 mdesc_release(md); 1222 mdesc_release(md);
1219 return -ENOENT; 1223 return -ENOENT;
1220 } 1224 }
1221 1225
1222 err = grab_mblocks(md); 1226 err = grab_mblocks(md);
1223 if (err < 0) 1227 if (err < 0)
1224 goto out; 1228 goto out;
1225 1229
1226 err = grab_mlgroups(md); 1230 err = grab_mlgroups(md);
1227 if (err < 0) 1231 if (err < 0)
1228 goto out; 1232 goto out;
1229 1233
1230 count = 0; 1234 count = 0;
1231 mdesc_for_each_node_by_name(md, node, "group") { 1235 mdesc_for_each_node_by_name(md, node, "group") {
1232 err = numa_parse_mdesc_group(md, node, count); 1236 err = numa_parse_mdesc_group(md, node, count);
1233 if (err < 0) 1237 if (err < 0)
1234 break; 1238 break;
1235 count++; 1239 count++;
1236 } 1240 }
1237 1241
1238 add_node_ranges(); 1242 add_node_ranges();
1239 1243
1240 for (i = 0; i < num_node_masks; i++) { 1244 for (i = 0; i < num_node_masks; i++) {
1241 allocate_node_data(i); 1245 allocate_node_data(i);
1242 node_set_online(i); 1246 node_set_online(i);
1243 } 1247 }
1244 1248
1245 err = 0; 1249 err = 0;
1246 out: 1250 out:
1247 mdesc_release(md); 1251 mdesc_release(md);
1248 return err; 1252 return err;
1249 } 1253 }
1250 1254
1251 static int __init numa_parse_jbus(void) 1255 static int __init numa_parse_jbus(void)
1252 { 1256 {
1253 unsigned long cpu, index; 1257 unsigned long cpu, index;
1254 1258
1255 /* NUMA node id is encoded in bits 36 and higher, and there is 1259 /* NUMA node id is encoded in bits 36 and higher, and there is
1256 * a 1-to-1 mapping from CPU ID to NUMA node ID. 1260 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1257 */ 1261 */
1258 index = 0; 1262 index = 0;
1259 for_each_present_cpu(cpu) { 1263 for_each_present_cpu(cpu) {
1260 numa_cpu_lookup_table[cpu] = index; 1264 numa_cpu_lookup_table[cpu] = index;
1261 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu)); 1265 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1262 node_masks[index].mask = ~((1UL << 36UL) - 1UL); 1266 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1263 node_masks[index].val = cpu << 36UL; 1267 node_masks[index].val = cpu << 36UL;
1264 1268
1265 index++; 1269 index++;
1266 } 1270 }
1267 num_node_masks = index; 1271 num_node_masks = index;
1268 1272
1269 add_node_ranges(); 1273 add_node_ranges();
1270 1274
1271 for (index = 0; index < num_node_masks; index++) { 1275 for (index = 0; index < num_node_masks; index++) {
1272 allocate_node_data(index); 1276 allocate_node_data(index);
1273 node_set_online(index); 1277 node_set_online(index);
1274 } 1278 }
1275 1279
1276 return 0; 1280 return 0;
1277 } 1281 }
1278 1282
1279 static int __init numa_parse_sun4u(void) 1283 static int __init numa_parse_sun4u(void)
1280 { 1284 {
1281 if (tlb_type == cheetah || tlb_type == cheetah_plus) { 1285 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1282 unsigned long ver; 1286 unsigned long ver;
1283 1287
1284 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 1288 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1285 if ((ver >> 32UL) == __JALAPENO_ID || 1289 if ((ver >> 32UL) == __JALAPENO_ID ||
1286 (ver >> 32UL) == __SERRANO_ID) 1290 (ver >> 32UL) == __SERRANO_ID)
1287 return numa_parse_jbus(); 1291 return numa_parse_jbus();
1288 } 1292 }
1289 return -1; 1293 return -1;
1290 } 1294 }
1291 1295
1292 static int __init bootmem_init_numa(void) 1296 static int __init bootmem_init_numa(void)
1293 { 1297 {
1294 int err = -1; 1298 int err = -1;
1295 1299
1296 numadbg("bootmem_init_numa()\n"); 1300 numadbg("bootmem_init_numa()\n");
1297 1301
1298 if (numa_enabled) { 1302 if (numa_enabled) {
1299 if (tlb_type == hypervisor) 1303 if (tlb_type == hypervisor)
1300 err = numa_parse_mdesc(); 1304 err = numa_parse_mdesc();
1301 else 1305 else
1302 err = numa_parse_sun4u(); 1306 err = numa_parse_sun4u();
1303 } 1307 }
1304 return err; 1308 return err;
1305 } 1309 }
1306 1310
1307 #else 1311 #else
1308 1312
1309 static int bootmem_init_numa(void) 1313 static int bootmem_init_numa(void)
1310 { 1314 {
1311 return -1; 1315 return -1;
1312 } 1316 }
1313 1317
1314 #endif 1318 #endif
1315 1319
1316 static void __init bootmem_init_nonnuma(void) 1320 static void __init bootmem_init_nonnuma(void)
1317 { 1321 {
1318 unsigned long top_of_ram = memblock_end_of_DRAM(); 1322 unsigned long top_of_ram = memblock_end_of_DRAM();
1319 unsigned long total_ram = memblock_phys_mem_size(); 1323 unsigned long total_ram = memblock_phys_mem_size();
1320 1324
1321 numadbg("bootmem_init_nonnuma()\n"); 1325 numadbg("bootmem_init_nonnuma()\n");
1322 1326
1323 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 1327 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1324 top_of_ram, total_ram); 1328 top_of_ram, total_ram);
1325 printk(KERN_INFO "Memory hole size: %ldMB\n", 1329 printk(KERN_INFO "Memory hole size: %ldMB\n",
1326 (top_of_ram - total_ram) >> 20); 1330 (top_of_ram - total_ram) >> 20);
1327 1331
1328 init_node_masks_nonnuma(); 1332 init_node_masks_nonnuma();
1329 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0); 1333 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1330 allocate_node_data(0); 1334 allocate_node_data(0);
1331 node_set_online(0); 1335 node_set_online(0);
1332 } 1336 }
1333 1337
1334 static unsigned long __init bootmem_init(unsigned long phys_base) 1338 static unsigned long __init bootmem_init(unsigned long phys_base)
1335 { 1339 {
1336 unsigned long end_pfn; 1340 unsigned long end_pfn;
1337 1341
1338 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 1342 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1339 max_pfn = max_low_pfn = end_pfn; 1343 max_pfn = max_low_pfn = end_pfn;
1340 min_low_pfn = (phys_base >> PAGE_SHIFT); 1344 min_low_pfn = (phys_base >> PAGE_SHIFT);
1341 1345
1342 if (bootmem_init_numa() < 0) 1346 if (bootmem_init_numa() < 0)
1343 bootmem_init_nonnuma(); 1347 bootmem_init_nonnuma();
1344 1348
1345 /* Dump memblock with node info. */ 1349 /* Dump memblock with node info. */
1346 memblock_dump_all(); 1350 memblock_dump_all();
1347 1351
1348 /* XXX cpu notifier XXX */ 1352 /* XXX cpu notifier XXX */
1349 1353
1350 sparse_memory_present_with_active_regions(MAX_NUMNODES); 1354 sparse_memory_present_with_active_regions(MAX_NUMNODES);
1351 sparse_init(); 1355 sparse_init();
1352 1356
1353 return end_pfn; 1357 return end_pfn;
1354 } 1358 }
1355 1359
1356 static struct linux_prom64_registers pall[MAX_BANKS] __initdata; 1360 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1357 static int pall_ents __initdata; 1361 static int pall_ents __initdata;
1358 1362
1359 #ifdef CONFIG_DEBUG_PAGEALLOC 1363 #ifdef CONFIG_DEBUG_PAGEALLOC
1360 static unsigned long __ref kernel_map_range(unsigned long pstart, 1364 static unsigned long __ref kernel_map_range(unsigned long pstart,
1361 unsigned long pend, pgprot_t prot) 1365 unsigned long pend, pgprot_t prot)
1362 { 1366 {
1363 unsigned long vstart = PAGE_OFFSET + pstart; 1367 unsigned long vstart = PAGE_OFFSET + pstart;
1364 unsigned long vend = PAGE_OFFSET + pend; 1368 unsigned long vend = PAGE_OFFSET + pend;
1365 unsigned long alloc_bytes = 0UL; 1369 unsigned long alloc_bytes = 0UL;
1366 1370
1367 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) { 1371 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1368 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n", 1372 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1369 vstart, vend); 1373 vstart, vend);
1370 prom_halt(); 1374 prom_halt();
1371 } 1375 }
1372 1376
1373 while (vstart < vend) { 1377 while (vstart < vend) {
1374 unsigned long this_end, paddr = __pa(vstart); 1378 unsigned long this_end, paddr = __pa(vstart);
1375 pgd_t *pgd = pgd_offset_k(vstart); 1379 pgd_t *pgd = pgd_offset_k(vstart);
1376 pud_t *pud; 1380 pud_t *pud;
1377 pmd_t *pmd; 1381 pmd_t *pmd;
1378 pte_t *pte; 1382 pte_t *pte;
1379 1383
1380 pud = pud_offset(pgd, vstart); 1384 pud = pud_offset(pgd, vstart);
1381 if (pud_none(*pud)) { 1385 if (pud_none(*pud)) {
1382 pmd_t *new; 1386 pmd_t *new;
1383 1387
1384 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1388 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1385 alloc_bytes += PAGE_SIZE; 1389 alloc_bytes += PAGE_SIZE;
1386 pud_populate(&init_mm, pud, new); 1390 pud_populate(&init_mm, pud, new);
1387 } 1391 }
1388 1392
1389 pmd = pmd_offset(pud, vstart); 1393 pmd = pmd_offset(pud, vstart);
1390 if (!pmd_present(*pmd)) { 1394 if (!pmd_present(*pmd)) {
1391 pte_t *new; 1395 pte_t *new;
1392 1396
1393 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1397 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1394 alloc_bytes += PAGE_SIZE; 1398 alloc_bytes += PAGE_SIZE;
1395 pmd_populate_kernel(&init_mm, pmd, new); 1399 pmd_populate_kernel(&init_mm, pmd, new);
1396 } 1400 }
1397 1401
1398 pte = pte_offset_kernel(pmd, vstart); 1402 pte = pte_offset_kernel(pmd, vstart);
1399 this_end = (vstart + PMD_SIZE) & PMD_MASK; 1403 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1400 if (this_end > vend) 1404 if (this_end > vend)
1401 this_end = vend; 1405 this_end = vend;
1402 1406
1403 while (vstart < this_end) { 1407 while (vstart < this_end) {
1404 pte_val(*pte) = (paddr | pgprot_val(prot)); 1408 pte_val(*pte) = (paddr | pgprot_val(prot));
1405 1409
1406 vstart += PAGE_SIZE; 1410 vstart += PAGE_SIZE;
1407 paddr += PAGE_SIZE; 1411 paddr += PAGE_SIZE;
1408 pte++; 1412 pte++;
1409 } 1413 }
1410 } 1414 }
1411 1415
1412 return alloc_bytes; 1416 return alloc_bytes;
1413 } 1417 }
1414 1418
1415 extern unsigned int kvmap_linear_patch[1]; 1419 extern unsigned int kvmap_linear_patch[1];
1416 #endif /* CONFIG_DEBUG_PAGEALLOC */ 1420 #endif /* CONFIG_DEBUG_PAGEALLOC */
1417 1421
1418 static void __init kpte_set_val(unsigned long index, unsigned long val) 1422 static void __init kpte_set_val(unsigned long index, unsigned long val)
1419 { 1423 {
1420 unsigned long *ptr = kpte_linear_bitmap; 1424 unsigned long *ptr = kpte_linear_bitmap;
1421 1425
1422 val <<= ((index % (BITS_PER_LONG / 2)) * 2); 1426 val <<= ((index % (BITS_PER_LONG / 2)) * 2);
1423 ptr += (index / (BITS_PER_LONG / 2)); 1427 ptr += (index / (BITS_PER_LONG / 2));
1424 1428
1425 *ptr |= val; 1429 *ptr |= val;
1426 } 1430 }
1427 1431
1428 static const unsigned long kpte_shift_min = 28; /* 256MB */ 1432 static const unsigned long kpte_shift_min = 28; /* 256MB */
1429 static const unsigned long kpte_shift_max = 34; /* 16GB */ 1433 static const unsigned long kpte_shift_max = 34; /* 16GB */
1430 static const unsigned long kpte_shift_incr = 3; 1434 static const unsigned long kpte_shift_incr = 3;
1431 1435
1432 static unsigned long kpte_mark_using_shift(unsigned long start, unsigned long end, 1436 static unsigned long kpte_mark_using_shift(unsigned long start, unsigned long end,
1433 unsigned long shift) 1437 unsigned long shift)
1434 { 1438 {
1435 unsigned long size = (1UL << shift); 1439 unsigned long size = (1UL << shift);
1436 unsigned long mask = (size - 1UL); 1440 unsigned long mask = (size - 1UL);
1437 unsigned long remains = end - start; 1441 unsigned long remains = end - start;
1438 unsigned long val; 1442 unsigned long val;
1439 1443
1440 if (remains < size || (start & mask)) 1444 if (remains < size || (start & mask))
1441 return start; 1445 return start;
1442 1446
1443 /* VAL maps: 1447 /* VAL maps:
1444 * 1448 *
1445 * shift 28 --> kern_linear_pte_xor index 1 1449 * shift 28 --> kern_linear_pte_xor index 1
1446 * shift 31 --> kern_linear_pte_xor index 2 1450 * shift 31 --> kern_linear_pte_xor index 2
1447 * shift 34 --> kern_linear_pte_xor index 3 1451 * shift 34 --> kern_linear_pte_xor index 3
1448 */ 1452 */
1449 val = ((shift - kpte_shift_min) / kpte_shift_incr) + 1; 1453 val = ((shift - kpte_shift_min) / kpte_shift_incr) + 1;
1450 1454
1451 remains &= ~mask; 1455 remains &= ~mask;
1452 if (shift != kpte_shift_max) 1456 if (shift != kpte_shift_max)
1453 remains = size; 1457 remains = size;
1454 1458
1455 while (remains) { 1459 while (remains) {
1456 unsigned long index = start >> kpte_shift_min; 1460 unsigned long index = start >> kpte_shift_min;
1457 1461
1458 kpte_set_val(index, val); 1462 kpte_set_val(index, val);
1459 1463
1460 start += 1UL << kpte_shift_min; 1464 start += 1UL << kpte_shift_min;
1461 remains -= 1UL << kpte_shift_min; 1465 remains -= 1UL << kpte_shift_min;
1462 } 1466 }
1463 1467
1464 return start; 1468 return start;
1465 } 1469 }
1466 1470
1467 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end) 1471 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1468 { 1472 {
1469 unsigned long smallest_size, smallest_mask; 1473 unsigned long smallest_size, smallest_mask;
1470 unsigned long s; 1474 unsigned long s;
1471 1475
1472 smallest_size = (1UL << kpte_shift_min); 1476 smallest_size = (1UL << kpte_shift_min);
1473 smallest_mask = (smallest_size - 1UL); 1477 smallest_mask = (smallest_size - 1UL);
1474 1478
1475 while (start < end) { 1479 while (start < end) {
1476 unsigned long orig_start = start; 1480 unsigned long orig_start = start;
1477 1481
1478 for (s = kpte_shift_max; s >= kpte_shift_min; s -= kpte_shift_incr) { 1482 for (s = kpte_shift_max; s >= kpte_shift_min; s -= kpte_shift_incr) {
1479 start = kpte_mark_using_shift(start, end, s); 1483 start = kpte_mark_using_shift(start, end, s);
1480 1484
1481 if (start != orig_start) 1485 if (start != orig_start)
1482 break; 1486 break;
1483 } 1487 }
1484 1488
1485 if (start == orig_start) 1489 if (start == orig_start)
1486 start = (start + smallest_size) & ~smallest_mask; 1490 start = (start + smallest_size) & ~smallest_mask;
1487 } 1491 }
1488 } 1492 }
1489 1493
1490 static void __init init_kpte_bitmap(void) 1494 static void __init init_kpte_bitmap(void)
1491 { 1495 {
1492 unsigned long i; 1496 unsigned long i;
1493 1497
1494 for (i = 0; i < pall_ents; i++) { 1498 for (i = 0; i < pall_ents; i++) {
1495 unsigned long phys_start, phys_end; 1499 unsigned long phys_start, phys_end;
1496 1500
1497 phys_start = pall[i].phys_addr; 1501 phys_start = pall[i].phys_addr;
1498 phys_end = phys_start + pall[i].reg_size; 1502 phys_end = phys_start + pall[i].reg_size;
1499 1503
1500 mark_kpte_bitmap(phys_start, phys_end); 1504 mark_kpte_bitmap(phys_start, phys_end);
1501 } 1505 }
1502 } 1506 }
1503 1507
1504 static void __init kernel_physical_mapping_init(void) 1508 static void __init kernel_physical_mapping_init(void)
1505 { 1509 {
1506 #ifdef CONFIG_DEBUG_PAGEALLOC 1510 #ifdef CONFIG_DEBUG_PAGEALLOC
1507 unsigned long i, mem_alloced = 0UL; 1511 unsigned long i, mem_alloced = 0UL;
1508 1512
1509 for (i = 0; i < pall_ents; i++) { 1513 for (i = 0; i < pall_ents; i++) {
1510 unsigned long phys_start, phys_end; 1514 unsigned long phys_start, phys_end;
1511 1515
1512 phys_start = pall[i].phys_addr; 1516 phys_start = pall[i].phys_addr;
1513 phys_end = phys_start + pall[i].reg_size; 1517 phys_end = phys_start + pall[i].reg_size;
1514 1518
1515 mem_alloced += kernel_map_range(phys_start, phys_end, 1519 mem_alloced += kernel_map_range(phys_start, phys_end,
1516 PAGE_KERNEL); 1520 PAGE_KERNEL);
1517 } 1521 }
1518 1522
1519 printk("Allocated %ld bytes for kernel page tables.\n", 1523 printk("Allocated %ld bytes for kernel page tables.\n",
1520 mem_alloced); 1524 mem_alloced);
1521 1525
1522 kvmap_linear_patch[0] = 0x01000000; /* nop */ 1526 kvmap_linear_patch[0] = 0x01000000; /* nop */
1523 flushi(&kvmap_linear_patch[0]); 1527 flushi(&kvmap_linear_patch[0]);
1524 1528
1525 __flush_tlb_all(); 1529 __flush_tlb_all();
1526 #endif 1530 #endif
1527 } 1531 }
1528 1532
1529 #ifdef CONFIG_DEBUG_PAGEALLOC 1533 #ifdef CONFIG_DEBUG_PAGEALLOC
1530 void kernel_map_pages(struct page *page, int numpages, int enable) 1534 void kernel_map_pages(struct page *page, int numpages, int enable)
1531 { 1535 {
1532 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT; 1536 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1533 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE); 1537 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1534 1538
1535 kernel_map_range(phys_start, phys_end, 1539 kernel_map_range(phys_start, phys_end,
1536 (enable ? PAGE_KERNEL : __pgprot(0))); 1540 (enable ? PAGE_KERNEL : __pgprot(0)));
1537 1541
1538 flush_tsb_kernel_range(PAGE_OFFSET + phys_start, 1542 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1539 PAGE_OFFSET + phys_end); 1543 PAGE_OFFSET + phys_end);
1540 1544
1541 /* we should perform an IPI and flush all tlbs, 1545 /* we should perform an IPI and flush all tlbs,
1542 * but that can deadlock->flush only current cpu. 1546 * but that can deadlock->flush only current cpu.
1543 */ 1547 */
1544 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start, 1548 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1545 PAGE_OFFSET + phys_end); 1549 PAGE_OFFSET + phys_end);
1546 } 1550 }
1547 #endif 1551 #endif
1548 1552
1549 unsigned long __init find_ecache_flush_span(unsigned long size) 1553 unsigned long __init find_ecache_flush_span(unsigned long size)
1550 { 1554 {
1551 int i; 1555 int i;
1552 1556
1553 for (i = 0; i < pavail_ents; i++) { 1557 for (i = 0; i < pavail_ents; i++) {
1554 if (pavail[i].reg_size >= size) 1558 if (pavail[i].reg_size >= size)
1555 return pavail[i].phys_addr; 1559 return pavail[i].phys_addr;
1556 } 1560 }
1557 1561
1558 return ~0UL; 1562 return ~0UL;
1559 } 1563 }
1560 1564
1561 unsigned long PAGE_OFFSET; 1565 unsigned long PAGE_OFFSET;
1562 EXPORT_SYMBOL(PAGE_OFFSET); 1566 EXPORT_SYMBOL(PAGE_OFFSET);
1563 1567
1564 static void __init page_offset_shift_patch_one(unsigned int *insn, unsigned long phys_bits) 1568 static void __init page_offset_shift_patch_one(unsigned int *insn, unsigned long phys_bits)
1565 { 1569 {
1566 unsigned long final_shift; 1570 unsigned long final_shift;
1567 unsigned int val = *insn; 1571 unsigned int val = *insn;
1568 unsigned int cnt; 1572 unsigned int cnt;
1569 1573
1570 /* We are patching in ilog2(max_supported_phys_address), and 1574 /* We are patching in ilog2(max_supported_phys_address), and
1571 * we are doing so in a manner similar to a relocation addend. 1575 * we are doing so in a manner similar to a relocation addend.
1572 * That is, we are adding the shift value to whatever value 1576 * That is, we are adding the shift value to whatever value
1573 * is in the shift instruction count field already. 1577 * is in the shift instruction count field already.
1574 */ 1578 */
1575 cnt = (val & 0x3f); 1579 cnt = (val & 0x3f);
1576 val &= ~0x3f; 1580 val &= ~0x3f;
1577 1581
1578 /* If we are trying to shift >= 64 bits, clear the destination 1582 /* If we are trying to shift >= 64 bits, clear the destination
1579 * register. This can happen when phys_bits ends up being equal 1583 * register. This can happen when phys_bits ends up being equal
1580 * to MAX_PHYS_ADDRESS_BITS. 1584 * to MAX_PHYS_ADDRESS_BITS.
1581 */ 1585 */
1582 final_shift = (cnt + (64 - phys_bits)); 1586 final_shift = (cnt + (64 - phys_bits));
1583 if (final_shift >= 64) { 1587 if (final_shift >= 64) {
1584 unsigned int rd = (val >> 25) & 0x1f; 1588 unsigned int rd = (val >> 25) & 0x1f;
1585 1589
1586 val = 0x80100000 | (rd << 25); 1590 val = 0x80100000 | (rd << 25);
1587 } else { 1591 } else {
1588 val |= final_shift; 1592 val |= final_shift;
1589 } 1593 }
1590 *insn = val; 1594 *insn = val;
1591 1595
1592 __asm__ __volatile__("flush %0" 1596 __asm__ __volatile__("flush %0"
1593 : /* no outputs */ 1597 : /* no outputs */
1594 : "r" (insn)); 1598 : "r" (insn));
1595 } 1599 }
1596 1600
1597 static void __init page_offset_shift_patch(unsigned long phys_bits) 1601 static void __init page_offset_shift_patch(unsigned long phys_bits)
1598 { 1602 {
1599 extern unsigned int __page_offset_shift_patch; 1603 extern unsigned int __page_offset_shift_patch;
1600 extern unsigned int __page_offset_shift_patch_end; 1604 extern unsigned int __page_offset_shift_patch_end;
1601 unsigned int *p; 1605 unsigned int *p;
1602 1606
1603 p = &__page_offset_shift_patch; 1607 p = &__page_offset_shift_patch;
1604 while (p < &__page_offset_shift_patch_end) { 1608 while (p < &__page_offset_shift_patch_end) {
1605 unsigned int *insn = (unsigned int *)(unsigned long)*p; 1609 unsigned int *insn = (unsigned int *)(unsigned long)*p;
1606 1610
1607 page_offset_shift_patch_one(insn, phys_bits); 1611 page_offset_shift_patch_one(insn, phys_bits);
1608 1612
1609 p++; 1613 p++;
1610 } 1614 }
1611 } 1615 }
1612 1616
1613 static void __init setup_page_offset(void) 1617 static void __init setup_page_offset(void)
1614 { 1618 {
1615 unsigned long max_phys_bits = 40; 1619 unsigned long max_phys_bits = 40;
1616 1620
1617 if (tlb_type == cheetah || tlb_type == cheetah_plus) { 1621 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1618 max_phys_bits = 42; 1622 max_phys_bits = 42;
1619 } else if (tlb_type == hypervisor) { 1623 } else if (tlb_type == hypervisor) {
1620 switch (sun4v_chip_type) { 1624 switch (sun4v_chip_type) {
1621 case SUN4V_CHIP_NIAGARA1: 1625 case SUN4V_CHIP_NIAGARA1:
1622 case SUN4V_CHIP_NIAGARA2: 1626 case SUN4V_CHIP_NIAGARA2:
1623 max_phys_bits = 39; 1627 max_phys_bits = 39;
1624 break; 1628 break;
1625 case SUN4V_CHIP_NIAGARA3: 1629 case SUN4V_CHIP_NIAGARA3:
1626 max_phys_bits = 43; 1630 max_phys_bits = 43;
1627 break; 1631 break;
1628 case SUN4V_CHIP_NIAGARA4: 1632 case SUN4V_CHIP_NIAGARA4:
1629 case SUN4V_CHIP_NIAGARA5: 1633 case SUN4V_CHIP_NIAGARA5:
1630 case SUN4V_CHIP_SPARC64X: 1634 case SUN4V_CHIP_SPARC64X:
1631 default: 1635 default:
1632 max_phys_bits = 47; 1636 max_phys_bits = 47;
1633 break; 1637 break;
1634 } 1638 }
1635 } 1639 }
1636 1640
1637 if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) { 1641 if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1638 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n", 1642 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1639 max_phys_bits); 1643 max_phys_bits);
1640 prom_halt(); 1644 prom_halt();
1641 } 1645 }
1642 1646
1643 PAGE_OFFSET = PAGE_OFFSET_BY_BITS(max_phys_bits); 1647 PAGE_OFFSET = PAGE_OFFSET_BY_BITS(max_phys_bits);
1644 1648
1645 pr_info("PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n", 1649 pr_info("PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1646 PAGE_OFFSET, max_phys_bits); 1650 PAGE_OFFSET, max_phys_bits);
1647 1651
1648 page_offset_shift_patch(max_phys_bits); 1652 page_offset_shift_patch(max_phys_bits);
1649 } 1653 }
1650 1654
1651 static void __init tsb_phys_patch(void) 1655 static void __init tsb_phys_patch(void)
1652 { 1656 {
1653 struct tsb_ldquad_phys_patch_entry *pquad; 1657 struct tsb_ldquad_phys_patch_entry *pquad;
1654 struct tsb_phys_patch_entry *p; 1658 struct tsb_phys_patch_entry *p;
1655 1659
1656 pquad = &__tsb_ldquad_phys_patch; 1660 pquad = &__tsb_ldquad_phys_patch;
1657 while (pquad < &__tsb_ldquad_phys_patch_end) { 1661 while (pquad < &__tsb_ldquad_phys_patch_end) {
1658 unsigned long addr = pquad->addr; 1662 unsigned long addr = pquad->addr;
1659 1663
1660 if (tlb_type == hypervisor) 1664 if (tlb_type == hypervisor)
1661 *(unsigned int *) addr = pquad->sun4v_insn; 1665 *(unsigned int *) addr = pquad->sun4v_insn;
1662 else 1666 else
1663 *(unsigned int *) addr = pquad->sun4u_insn; 1667 *(unsigned int *) addr = pquad->sun4u_insn;
1664 wmb(); 1668 wmb();
1665 __asm__ __volatile__("flush %0" 1669 __asm__ __volatile__("flush %0"
1666 : /* no outputs */ 1670 : /* no outputs */
1667 : "r" (addr)); 1671 : "r" (addr));
1668 1672
1669 pquad++; 1673 pquad++;
1670 } 1674 }
1671 1675
1672 p = &__tsb_phys_patch; 1676 p = &__tsb_phys_patch;
1673 while (p < &__tsb_phys_patch_end) { 1677 while (p < &__tsb_phys_patch_end) {
1674 unsigned long addr = p->addr; 1678 unsigned long addr = p->addr;
1675 1679
1676 *(unsigned int *) addr = p->insn; 1680 *(unsigned int *) addr = p->insn;
1677 wmb(); 1681 wmb();
1678 __asm__ __volatile__("flush %0" 1682 __asm__ __volatile__("flush %0"
1679 : /* no outputs */ 1683 : /* no outputs */
1680 : "r" (addr)); 1684 : "r" (addr));
1681 1685
1682 p++; 1686 p++;
1683 } 1687 }
1684 } 1688 }
1685 1689
1686 /* Don't mark as init, we give this to the Hypervisor. */ 1690 /* Don't mark as init, we give this to the Hypervisor. */
1687 #ifndef CONFIG_DEBUG_PAGEALLOC 1691 #ifndef CONFIG_DEBUG_PAGEALLOC
1688 #define NUM_KTSB_DESCR 2 1692 #define NUM_KTSB_DESCR 2
1689 #else 1693 #else
1690 #define NUM_KTSB_DESCR 1 1694 #define NUM_KTSB_DESCR 1
1691 #endif 1695 #endif
1692 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR]; 1696 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1693 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES]; 1697 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1694 1698
1695 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa) 1699 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1696 { 1700 {
1697 pa >>= KTSB_PHYS_SHIFT; 1701 pa >>= KTSB_PHYS_SHIFT;
1698 1702
1699 while (start < end) { 1703 while (start < end) {
1700 unsigned int *ia = (unsigned int *)(unsigned long)*start; 1704 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1701 1705
1702 ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10); 1706 ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1703 __asm__ __volatile__("flush %0" : : "r" (ia)); 1707 __asm__ __volatile__("flush %0" : : "r" (ia));
1704 1708
1705 ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff); 1709 ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1706 __asm__ __volatile__("flush %0" : : "r" (ia + 1)); 1710 __asm__ __volatile__("flush %0" : : "r" (ia + 1));
1707 1711
1708 start++; 1712 start++;
1709 } 1713 }
1710 } 1714 }
1711 1715
1712 static void ktsb_phys_patch(void) 1716 static void ktsb_phys_patch(void)
1713 { 1717 {
1714 extern unsigned int __swapper_tsb_phys_patch; 1718 extern unsigned int __swapper_tsb_phys_patch;
1715 extern unsigned int __swapper_tsb_phys_patch_end; 1719 extern unsigned int __swapper_tsb_phys_patch_end;
1716 unsigned long ktsb_pa; 1720 unsigned long ktsb_pa;
1717 1721
1718 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); 1722 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1719 patch_one_ktsb_phys(&__swapper_tsb_phys_patch, 1723 patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1720 &__swapper_tsb_phys_patch_end, ktsb_pa); 1724 &__swapper_tsb_phys_patch_end, ktsb_pa);
1721 #ifndef CONFIG_DEBUG_PAGEALLOC 1725 #ifndef CONFIG_DEBUG_PAGEALLOC
1722 { 1726 {
1723 extern unsigned int __swapper_4m_tsb_phys_patch; 1727 extern unsigned int __swapper_4m_tsb_phys_patch;
1724 extern unsigned int __swapper_4m_tsb_phys_patch_end; 1728 extern unsigned int __swapper_4m_tsb_phys_patch_end;
1725 ktsb_pa = (kern_base + 1729 ktsb_pa = (kern_base +
1726 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); 1730 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1727 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch, 1731 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1728 &__swapper_4m_tsb_phys_patch_end, ktsb_pa); 1732 &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1729 } 1733 }
1730 #endif 1734 #endif
1731 } 1735 }
1732 1736
1733 static void __init sun4v_ktsb_init(void) 1737 static void __init sun4v_ktsb_init(void)
1734 { 1738 {
1735 unsigned long ktsb_pa; 1739 unsigned long ktsb_pa;
1736 1740
1737 /* First KTSB for PAGE_SIZE mappings. */ 1741 /* First KTSB for PAGE_SIZE mappings. */
1738 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); 1742 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1739 1743
1740 switch (PAGE_SIZE) { 1744 switch (PAGE_SIZE) {
1741 case 8 * 1024: 1745 case 8 * 1024:
1742 default: 1746 default:
1743 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K; 1747 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1744 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K; 1748 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1745 break; 1749 break;
1746 1750
1747 case 64 * 1024: 1751 case 64 * 1024:
1748 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K; 1752 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1749 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K; 1753 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1750 break; 1754 break;
1751 1755
1752 case 512 * 1024: 1756 case 512 * 1024:
1753 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K; 1757 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1754 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K; 1758 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1755 break; 1759 break;
1756 1760
1757 case 4 * 1024 * 1024: 1761 case 4 * 1024 * 1024:
1758 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB; 1762 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1759 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB; 1763 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1760 break; 1764 break;
1761 } 1765 }
1762 1766
1763 ktsb_descr[0].assoc = 1; 1767 ktsb_descr[0].assoc = 1;
1764 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES; 1768 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1765 ktsb_descr[0].ctx_idx = 0; 1769 ktsb_descr[0].ctx_idx = 0;
1766 ktsb_descr[0].tsb_base = ktsb_pa; 1770 ktsb_descr[0].tsb_base = ktsb_pa;
1767 ktsb_descr[0].resv = 0; 1771 ktsb_descr[0].resv = 0;
1768 1772
1769 #ifndef CONFIG_DEBUG_PAGEALLOC 1773 #ifndef CONFIG_DEBUG_PAGEALLOC
1770 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */ 1774 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
1771 ktsb_pa = (kern_base + 1775 ktsb_pa = (kern_base +
1772 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); 1776 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1773 1777
1774 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB; 1778 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1775 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB | 1779 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1776 HV_PGSZ_MASK_256MB | 1780 HV_PGSZ_MASK_256MB |
1777 HV_PGSZ_MASK_2GB | 1781 HV_PGSZ_MASK_2GB |
1778 HV_PGSZ_MASK_16GB) & 1782 HV_PGSZ_MASK_16GB) &
1779 cpu_pgsz_mask); 1783 cpu_pgsz_mask);
1780 ktsb_descr[1].assoc = 1; 1784 ktsb_descr[1].assoc = 1;
1781 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES; 1785 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1782 ktsb_descr[1].ctx_idx = 0; 1786 ktsb_descr[1].ctx_idx = 0;
1783 ktsb_descr[1].tsb_base = ktsb_pa; 1787 ktsb_descr[1].tsb_base = ktsb_pa;
1784 ktsb_descr[1].resv = 0; 1788 ktsb_descr[1].resv = 0;
1785 #endif 1789 #endif
1786 } 1790 }
1787 1791
1788 void sun4v_ktsb_register(void) 1792 void sun4v_ktsb_register(void)
1789 { 1793 {
1790 unsigned long pa, ret; 1794 unsigned long pa, ret;
1791 1795
1792 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE); 1796 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1793 1797
1794 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa); 1798 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1795 if (ret != 0) { 1799 if (ret != 0) {
1796 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: " 1800 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1797 "errors with %lx\n", pa, ret); 1801 "errors with %lx\n", pa, ret);
1798 prom_halt(); 1802 prom_halt();
1799 } 1803 }
1800 } 1804 }
1801 1805
1802 static void __init sun4u_linear_pte_xor_finalize(void) 1806 static void __init sun4u_linear_pte_xor_finalize(void)
1803 { 1807 {
1804 #ifndef CONFIG_DEBUG_PAGEALLOC 1808 #ifndef CONFIG_DEBUG_PAGEALLOC
1805 /* This is where we would add Panther support for 1809 /* This is where we would add Panther support for
1806 * 32MB and 256MB pages. 1810 * 32MB and 256MB pages.
1807 */ 1811 */
1808 #endif 1812 #endif
1809 } 1813 }
1810 1814
1811 static void __init sun4v_linear_pte_xor_finalize(void) 1815 static void __init sun4v_linear_pte_xor_finalize(void)
1812 { 1816 {
1813 #ifndef CONFIG_DEBUG_PAGEALLOC 1817 #ifndef CONFIG_DEBUG_PAGEALLOC
1814 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) { 1818 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1815 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^ 1819 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1816 PAGE_OFFSET; 1820 PAGE_OFFSET;
1817 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V | 1821 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1818 _PAGE_P_4V | _PAGE_W_4V); 1822 _PAGE_P_4V | _PAGE_W_4V);
1819 } else { 1823 } else {
1820 kern_linear_pte_xor[1] = kern_linear_pte_xor[0]; 1824 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1821 } 1825 }
1822 1826
1823 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) { 1827 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1824 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^ 1828 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
1825 PAGE_OFFSET; 1829 PAGE_OFFSET;
1826 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V | 1830 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1827 _PAGE_P_4V | _PAGE_W_4V); 1831 _PAGE_P_4V | _PAGE_W_4V);
1828 } else { 1832 } else {
1829 kern_linear_pte_xor[2] = kern_linear_pte_xor[1]; 1833 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
1830 } 1834 }
1831 1835
1832 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) { 1836 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
1833 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^ 1837 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
1834 PAGE_OFFSET; 1838 PAGE_OFFSET;
1835 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V | 1839 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1836 _PAGE_P_4V | _PAGE_W_4V); 1840 _PAGE_P_4V | _PAGE_W_4V);
1837 } else { 1841 } else {
1838 kern_linear_pte_xor[3] = kern_linear_pte_xor[2]; 1842 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
1839 } 1843 }
1840 #endif 1844 #endif
1841 } 1845 }
1842 1846
1843 /* paging_init() sets up the page tables */ 1847 /* paging_init() sets up the page tables */
1844 1848
1845 static unsigned long last_valid_pfn; 1849 static unsigned long last_valid_pfn;
1846 pgd_t swapper_pg_dir[PTRS_PER_PGD]; 1850 pgd_t swapper_pg_dir[PTRS_PER_PGD];
1847 1851
1848 static void sun4u_pgprot_init(void); 1852 static void sun4u_pgprot_init(void);
1849 static void sun4v_pgprot_init(void); 1853 static void sun4v_pgprot_init(void);
1850 1854
1851 void __init paging_init(void) 1855 void __init paging_init(void)
1852 { 1856 {
1853 unsigned long end_pfn, shift, phys_base; 1857 unsigned long end_pfn, shift, phys_base;
1854 unsigned long real_end, i; 1858 unsigned long real_end, i;
1855 int node; 1859 int node;
1856 1860
1857 setup_page_offset(); 1861 setup_page_offset();
1858 1862
1859 /* These build time checkes make sure that the dcache_dirty_cpu() 1863 /* These build time checkes make sure that the dcache_dirty_cpu()
1860 * page->flags usage will work. 1864 * page->flags usage will work.
1861 * 1865 *
1862 * When a page gets marked as dcache-dirty, we store the 1866 * When a page gets marked as dcache-dirty, we store the
1863 * cpu number starting at bit 32 in the page->flags. Also, 1867 * cpu number starting at bit 32 in the page->flags. Also,
1864 * functions like clear_dcache_dirty_cpu use the cpu mask 1868 * functions like clear_dcache_dirty_cpu use the cpu mask
1865 * in 13-bit signed-immediate instruction fields. 1869 * in 13-bit signed-immediate instruction fields.
1866 */ 1870 */
1867 1871
1868 /* 1872 /*
1869 * Page flags must not reach into upper 32 bits that are used 1873 * Page flags must not reach into upper 32 bits that are used
1870 * for the cpu number 1874 * for the cpu number
1871 */ 1875 */
1872 BUILD_BUG_ON(NR_PAGEFLAGS > 32); 1876 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1873 1877
1874 /* 1878 /*
1875 * The bit fields placed in the high range must not reach below 1879 * The bit fields placed in the high range must not reach below
1876 * the 32 bit boundary. Otherwise we cannot place the cpu field 1880 * the 32 bit boundary. Otherwise we cannot place the cpu field
1877 * at the 32 bit boundary. 1881 * at the 32 bit boundary.
1878 */ 1882 */
1879 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH + 1883 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1880 ilog2(roundup_pow_of_two(NR_CPUS)) > 32); 1884 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1881 1885
1882 BUILD_BUG_ON(NR_CPUS > 4096); 1886 BUILD_BUG_ON(NR_CPUS > 4096);
1883 1887
1884 kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB; 1888 kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
1885 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE; 1889 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1886 1890
1887 /* Invalidate both kernel TSBs. */ 1891 /* Invalidate both kernel TSBs. */
1888 memset(swapper_tsb, 0x40, sizeof(swapper_tsb)); 1892 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1889 #ifndef CONFIG_DEBUG_PAGEALLOC 1893 #ifndef CONFIG_DEBUG_PAGEALLOC
1890 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); 1894 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1891 #endif 1895 #endif
1892 1896
1893 if (tlb_type == hypervisor) 1897 if (tlb_type == hypervisor)
1894 sun4v_pgprot_init(); 1898 sun4v_pgprot_init();
1895 else 1899 else
1896 sun4u_pgprot_init(); 1900 sun4u_pgprot_init();
1897 1901
1898 if (tlb_type == cheetah_plus || 1902 if (tlb_type == cheetah_plus ||
1899 tlb_type == hypervisor) { 1903 tlb_type == hypervisor) {
1900 tsb_phys_patch(); 1904 tsb_phys_patch();
1901 ktsb_phys_patch(); 1905 ktsb_phys_patch();
1902 } 1906 }
1903 1907
1904 if (tlb_type == hypervisor) 1908 if (tlb_type == hypervisor)
1905 sun4v_patch_tlb_handlers(); 1909 sun4v_patch_tlb_handlers();
1906 1910
1907 /* Find available physical memory... 1911 /* Find available physical memory...
1908 * 1912 *
1909 * Read it twice in order to work around a bug in openfirmware. 1913 * Read it twice in order to work around a bug in openfirmware.
1910 * The call to grab this table itself can cause openfirmware to 1914 * The call to grab this table itself can cause openfirmware to
1911 * allocate memory, which in turn can take away some space from 1915 * allocate memory, which in turn can take away some space from
1912 * the list of available memory. Reading it twice makes sure 1916 * the list of available memory. Reading it twice makes sure
1913 * we really do get the final value. 1917 * we really do get the final value.
1914 */ 1918 */
1915 read_obp_translations(); 1919 read_obp_translations();
1916 read_obp_memory("reg", &pall[0], &pall_ents); 1920 read_obp_memory("reg", &pall[0], &pall_ents);
1917 read_obp_memory("available", &pavail[0], &pavail_ents); 1921 read_obp_memory("available", &pavail[0], &pavail_ents);
1918 read_obp_memory("available", &pavail[0], &pavail_ents); 1922 read_obp_memory("available", &pavail[0], &pavail_ents);
1919 1923
1920 phys_base = 0xffffffffffffffffUL; 1924 phys_base = 0xffffffffffffffffUL;
1921 for (i = 0; i < pavail_ents; i++) { 1925 for (i = 0; i < pavail_ents; i++) {
1922 phys_base = min(phys_base, pavail[i].phys_addr); 1926 phys_base = min(phys_base, pavail[i].phys_addr);
1923 memblock_add(pavail[i].phys_addr, pavail[i].reg_size); 1927 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1924 } 1928 }
1925 1929
1926 memblock_reserve(kern_base, kern_size); 1930 memblock_reserve(kern_base, kern_size);
1927 1931
1928 find_ramdisk(phys_base); 1932 find_ramdisk(phys_base);
1929 1933
1930 memblock_enforce_memory_limit(cmdline_memory_size); 1934 memblock_enforce_memory_limit(cmdline_memory_size);
1931 1935
1932 memblock_allow_resize(); 1936 memblock_allow_resize();
1933 memblock_dump_all(); 1937 memblock_dump_all();
1934 1938
1935 set_bit(0, mmu_context_bmap); 1939 set_bit(0, mmu_context_bmap);
1936 1940
1937 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE); 1941 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1938 1942
1939 real_end = (unsigned long)_end; 1943 real_end = (unsigned long)_end;
1940 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB); 1944 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
1941 printk("Kernel: Using %d locked TLB entries for main kernel image.\n", 1945 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1942 num_kernel_image_mappings); 1946 num_kernel_image_mappings);
1943 1947
1944 /* Set kernel pgd to upper alias so physical page computations 1948 /* Set kernel pgd to upper alias so physical page computations
1945 * work. 1949 * work.
1946 */ 1950 */
1947 init_mm.pgd += ((shift) / (sizeof(pgd_t))); 1951 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1948 1952
1949 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir)); 1953 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1950 1954
1951 /* Now can init the kernel/bad page tables. */ 1955 /* Now can init the kernel/bad page tables. */
1952 pud_set(pud_offset(&swapper_pg_dir[0], 0), 1956 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1953 swapper_low_pmd_dir + (shift / sizeof(pgd_t))); 1957 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1954 1958
1955 inherit_prom_mappings(); 1959 inherit_prom_mappings();
1956 1960
1957 init_kpte_bitmap(); 1961 init_kpte_bitmap();
1958 1962
1959 /* Ok, we can use our TLB miss and window trap handlers safely. */ 1963 /* Ok, we can use our TLB miss and window trap handlers safely. */
1960 setup_tba(); 1964 setup_tba();
1961 1965
1962 __flush_tlb_all(); 1966 __flush_tlb_all();
1963 1967
1964 prom_build_devicetree(); 1968 prom_build_devicetree();
1965 of_populate_present_mask(); 1969 of_populate_present_mask();
1966 #ifndef CONFIG_SMP 1970 #ifndef CONFIG_SMP
1967 of_fill_in_cpu_data(); 1971 of_fill_in_cpu_data();
1968 #endif 1972 #endif
1969 1973
1970 if (tlb_type == hypervisor) { 1974 if (tlb_type == hypervisor) {
1971 sun4v_mdesc_init(); 1975 sun4v_mdesc_init();
1972 mdesc_populate_present_mask(cpu_all_mask); 1976 mdesc_populate_present_mask(cpu_all_mask);
1973 #ifndef CONFIG_SMP 1977 #ifndef CONFIG_SMP
1974 mdesc_fill_in_cpu_data(cpu_all_mask); 1978 mdesc_fill_in_cpu_data(cpu_all_mask);
1975 #endif 1979 #endif
1976 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask); 1980 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
1977 1981
1978 sun4v_linear_pte_xor_finalize(); 1982 sun4v_linear_pte_xor_finalize();
1979 1983
1980 sun4v_ktsb_init(); 1984 sun4v_ktsb_init();
1981 sun4v_ktsb_register(); 1985 sun4v_ktsb_register();
1982 } else { 1986 } else {
1983 unsigned long impl, ver; 1987 unsigned long impl, ver;
1984 1988
1985 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K | 1989 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
1986 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB); 1990 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
1987 1991
1988 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver)); 1992 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
1989 impl = ((ver >> 32) & 0xffff); 1993 impl = ((ver >> 32) & 0xffff);
1990 if (impl == PANTHER_IMPL) 1994 if (impl == PANTHER_IMPL)
1991 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB | 1995 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
1992 HV_PGSZ_MASK_256MB); 1996 HV_PGSZ_MASK_256MB);
1993 1997
1994 sun4u_linear_pte_xor_finalize(); 1998 sun4u_linear_pte_xor_finalize();
1995 } 1999 }
1996 2000
1997 /* Flush the TLBs and the 4M TSB so that the updated linear 2001 /* Flush the TLBs and the 4M TSB so that the updated linear
1998 * pte XOR settings are realized for all mappings. 2002 * pte XOR settings are realized for all mappings.
1999 */ 2003 */
2000 __flush_tlb_all(); 2004 __flush_tlb_all();
2001 #ifndef CONFIG_DEBUG_PAGEALLOC 2005 #ifndef CONFIG_DEBUG_PAGEALLOC
2002 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); 2006 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2003 #endif 2007 #endif
2004 __flush_tlb_all(); 2008 __flush_tlb_all();
2005 2009
2006 /* Setup bootmem... */ 2010 /* Setup bootmem... */
2007 last_valid_pfn = end_pfn = bootmem_init(phys_base); 2011 last_valid_pfn = end_pfn = bootmem_init(phys_base);
2008 2012
2009 /* Once the OF device tree and MDESC have been setup, we know 2013 /* Once the OF device tree and MDESC have been setup, we know
2010 * the list of possible cpus. Therefore we can allocate the 2014 * the list of possible cpus. Therefore we can allocate the
2011 * IRQ stacks. 2015 * IRQ stacks.
2012 */ 2016 */
2013 for_each_possible_cpu(i) { 2017 for_each_possible_cpu(i) {
2014 node = cpu_to_node(i); 2018 node = cpu_to_node(i);
2015 2019
2016 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node), 2020 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2017 THREAD_SIZE, 2021 THREAD_SIZE,
2018 THREAD_SIZE, 0); 2022 THREAD_SIZE, 0);
2019 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node), 2023 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2020 THREAD_SIZE, 2024 THREAD_SIZE,
2021 THREAD_SIZE, 0); 2025 THREAD_SIZE, 0);
2022 } 2026 }
2023 2027
2024 kernel_physical_mapping_init(); 2028 kernel_physical_mapping_init();
2025 2029
2026 { 2030 {
2027 unsigned long max_zone_pfns[MAX_NR_ZONES]; 2031 unsigned long max_zone_pfns[MAX_NR_ZONES];
2028 2032
2029 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 2033 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2030 2034
2031 max_zone_pfns[ZONE_NORMAL] = end_pfn; 2035 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2032 2036
2033 free_area_init_nodes(max_zone_pfns); 2037 free_area_init_nodes(max_zone_pfns);
2034 } 2038 }
2035 2039
2036 printk("Booting Linux...\n"); 2040 printk("Booting Linux...\n");
2037 } 2041 }
2038 2042
2039 int page_in_phys_avail(unsigned long paddr) 2043 int page_in_phys_avail(unsigned long paddr)
2040 { 2044 {
2041 int i; 2045 int i;
2042 2046
2043 paddr &= PAGE_MASK; 2047 paddr &= PAGE_MASK;
2044 2048
2045 for (i = 0; i < pavail_ents; i++) { 2049 for (i = 0; i < pavail_ents; i++) {
2046 unsigned long start, end; 2050 unsigned long start, end;
2047 2051
2048 start = pavail[i].phys_addr; 2052 start = pavail[i].phys_addr;
2049 end = start + pavail[i].reg_size; 2053 end = start + pavail[i].reg_size;
2050 2054
2051 if (paddr >= start && paddr < end) 2055 if (paddr >= start && paddr < end)
2052 return 1; 2056 return 1;
2053 } 2057 }
2054 if (paddr >= kern_base && paddr < (kern_base + kern_size)) 2058 if (paddr >= kern_base && paddr < (kern_base + kern_size))
2055 return 1; 2059 return 1;
2056 #ifdef CONFIG_BLK_DEV_INITRD 2060 #ifdef CONFIG_BLK_DEV_INITRD
2057 if (paddr >= __pa(initrd_start) && 2061 if (paddr >= __pa(initrd_start) &&
2058 paddr < __pa(PAGE_ALIGN(initrd_end))) 2062 paddr < __pa(PAGE_ALIGN(initrd_end)))
2059 return 1; 2063 return 1;
2060 #endif 2064 #endif
2061 2065
2062 return 0; 2066 return 0;
2063 } 2067 }
2064 2068
2065 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata; 2069 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
2066 static int pavail_rescan_ents __initdata; 2070 static int pavail_rescan_ents __initdata;
2067 2071
2068 /* Certain OBP calls, such as fetching "available" properties, can 2072 /* Certain OBP calls, such as fetching "available" properties, can
2069 * claim physical memory. So, along with initializing the valid 2073 * claim physical memory. So, along with initializing the valid
2070 * address bitmap, what we do here is refetch the physical available 2074 * address bitmap, what we do here is refetch the physical available
2071 * memory list again, and make sure it provides at least as much 2075 * memory list again, and make sure it provides at least as much
2072 * memory as 'pavail' does. 2076 * memory as 'pavail' does.
2073 */ 2077 */
2074 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap) 2078 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
2075 { 2079 {
2076 int i; 2080 int i;
2077 2081
2078 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents); 2082 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
2079 2083
2080 for (i = 0; i < pavail_ents; i++) { 2084 for (i = 0; i < pavail_ents; i++) {
2081 unsigned long old_start, old_end; 2085 unsigned long old_start, old_end;
2082 2086
2083 old_start = pavail[i].phys_addr; 2087 old_start = pavail[i].phys_addr;
2084 old_end = old_start + pavail[i].reg_size; 2088 old_end = old_start + pavail[i].reg_size;
2085 while (old_start < old_end) { 2089 while (old_start < old_end) {
2086 int n; 2090 int n;
2087 2091
2088 for (n = 0; n < pavail_rescan_ents; n++) { 2092 for (n = 0; n < pavail_rescan_ents; n++) {
2089 unsigned long new_start, new_end; 2093 unsigned long new_start, new_end;
2090 2094
2091 new_start = pavail_rescan[n].phys_addr; 2095 new_start = pavail_rescan[n].phys_addr;
2092 new_end = new_start + 2096 new_end = new_start +
2093 pavail_rescan[n].reg_size; 2097 pavail_rescan[n].reg_size;
2094 2098
2095 if (new_start <= old_start && 2099 if (new_start <= old_start &&
2096 new_end >= (old_start + PAGE_SIZE)) { 2100 new_end >= (old_start + PAGE_SIZE)) {
2097 set_bit(old_start >> ILOG2_4MB, bitmap); 2101 set_bit(old_start >> ILOG2_4MB, bitmap);
2098 goto do_next_page; 2102 goto do_next_page;
2099 } 2103 }
2100 } 2104 }
2101 2105
2102 prom_printf("mem_init: Lost memory in pavail\n"); 2106 prom_printf("mem_init: Lost memory in pavail\n");
2103 prom_printf("mem_init: OLD start[%lx] size[%lx]\n", 2107 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
2104 pavail[i].phys_addr, 2108 pavail[i].phys_addr,
2105 pavail[i].reg_size); 2109 pavail[i].reg_size);
2106 prom_printf("mem_init: NEW start[%lx] size[%lx]\n", 2110 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
2107 pavail_rescan[i].phys_addr, 2111 pavail_rescan[i].phys_addr,
2108 pavail_rescan[i].reg_size); 2112 pavail_rescan[i].reg_size);
2109 prom_printf("mem_init: Cannot continue, aborting.\n"); 2113 prom_printf("mem_init: Cannot continue, aborting.\n");
2110 prom_halt(); 2114 prom_halt();
2111 2115
2112 do_next_page: 2116 do_next_page:
2113 old_start += PAGE_SIZE; 2117 old_start += PAGE_SIZE;
2114 } 2118 }
2115 } 2119 }
2116 } 2120 }
2117 2121
2118 static void __init patch_tlb_miss_handler_bitmap(void) 2122 static void __init patch_tlb_miss_handler_bitmap(void)
2119 { 2123 {
2120 extern unsigned int valid_addr_bitmap_insn[]; 2124 extern unsigned int valid_addr_bitmap_insn[];
2121 extern unsigned int valid_addr_bitmap_patch[]; 2125 extern unsigned int valid_addr_bitmap_patch[];
2122 2126
2123 valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1]; 2127 valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
2124 mb(); 2128 mb();
2125 valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0]; 2129 valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
2126 flushi(&valid_addr_bitmap_insn[0]); 2130 flushi(&valid_addr_bitmap_insn[0]);
2127 } 2131 }
2128 2132
2129 static void __init register_page_bootmem_info(void) 2133 static void __init register_page_bootmem_info(void)
2130 { 2134 {
2131 #ifdef CONFIG_NEED_MULTIPLE_NODES 2135 #ifdef CONFIG_NEED_MULTIPLE_NODES
2132 int i; 2136 int i;
2133 2137
2134 for_each_online_node(i) 2138 for_each_online_node(i)
2135 if (NODE_DATA(i)->node_spanned_pages) 2139 if (NODE_DATA(i)->node_spanned_pages)
2136 register_page_bootmem_info_node(NODE_DATA(i)); 2140 register_page_bootmem_info_node(NODE_DATA(i));
2137 #endif 2141 #endif
2138 } 2142 }
2139 void __init mem_init(void) 2143 void __init mem_init(void)
2140 { 2144 {
2141 unsigned long addr, last; 2145 unsigned long addr, last;
2142 2146
2143 addr = PAGE_OFFSET + kern_base; 2147 addr = PAGE_OFFSET + kern_base;
2144 last = PAGE_ALIGN(kern_size) + addr; 2148 last = PAGE_ALIGN(kern_size) + addr;
2145 while (addr < last) { 2149 while (addr < last) {
2146 set_bit(__pa(addr) >> ILOG2_4MB, sparc64_valid_addr_bitmap); 2150 set_bit(__pa(addr) >> ILOG2_4MB, sparc64_valid_addr_bitmap);
2147 addr += PAGE_SIZE; 2151 addr += PAGE_SIZE;
2148 } 2152 }
2149 2153
2150 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap); 2154 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
2151 patch_tlb_miss_handler_bitmap(); 2155 patch_tlb_miss_handler_bitmap();
2152 2156
2153 high_memory = __va(last_valid_pfn << PAGE_SHIFT); 2157 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2154 2158
2155 register_page_bootmem_info(); 2159 register_page_bootmem_info();
2156 free_all_bootmem(); 2160 free_all_bootmem();
2157 2161
2158 /* 2162 /*
2159 * Set up the zero page, mark it reserved, so that page count 2163 * Set up the zero page, mark it reserved, so that page count
2160 * is not manipulated when freeing the page from user ptes. 2164 * is not manipulated when freeing the page from user ptes.
2161 */ 2165 */
2162 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0); 2166 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2163 if (mem_map_zero == NULL) { 2167 if (mem_map_zero == NULL) {
2164 prom_printf("paging_init: Cannot alloc zero page.\n"); 2168 prom_printf("paging_init: Cannot alloc zero page.\n");
2165 prom_halt(); 2169 prom_halt();
2166 } 2170 }
2167 mark_page_reserved(mem_map_zero); 2171 mark_page_reserved(mem_map_zero);
2168 2172
2169 mem_init_print_info(NULL); 2173 mem_init_print_info(NULL);
2170 2174
2171 if (tlb_type == cheetah || tlb_type == cheetah_plus) 2175 if (tlb_type == cheetah || tlb_type == cheetah_plus)
2172 cheetah_ecache_flush_init(); 2176 cheetah_ecache_flush_init();
2173 } 2177 }
2174 2178
2175 void free_initmem(void) 2179 void free_initmem(void)
2176 { 2180 {
2177 unsigned long addr, initend; 2181 unsigned long addr, initend;
2178 int do_free = 1; 2182 int do_free = 1;
2179 2183
2180 /* If the physical memory maps were trimmed by kernel command 2184 /* If the physical memory maps were trimmed by kernel command
2181 * line options, don't even try freeing this initmem stuff up. 2185 * line options, don't even try freeing this initmem stuff up.
2182 * The kernel image could have been in the trimmed out region 2186 * The kernel image could have been in the trimmed out region
2183 * and if so the freeing below will free invalid page structs. 2187 * and if so the freeing below will free invalid page structs.
2184 */ 2188 */
2185 if (cmdline_memory_size) 2189 if (cmdline_memory_size)
2186 do_free = 0; 2190 do_free = 0;
2187 2191
2188 /* 2192 /*
2189 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes. 2193 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2190 */ 2194 */
2191 addr = PAGE_ALIGN((unsigned long)(__init_begin)); 2195 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2192 initend = (unsigned long)(__init_end) & PAGE_MASK; 2196 initend = (unsigned long)(__init_end) & PAGE_MASK;
2193 for (; addr < initend; addr += PAGE_SIZE) { 2197 for (; addr < initend; addr += PAGE_SIZE) {
2194 unsigned long page; 2198 unsigned long page;
2195 2199
2196 page = (addr + 2200 page = (addr +
2197 ((unsigned long) __va(kern_base)) - 2201 ((unsigned long) __va(kern_base)) -
2198 ((unsigned long) KERNBASE)); 2202 ((unsigned long) KERNBASE));
2199 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); 2203 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2200 2204
2201 if (do_free) 2205 if (do_free)
2202 free_reserved_page(virt_to_page(page)); 2206 free_reserved_page(virt_to_page(page));
2203 } 2207 }
2204 } 2208 }
2205 2209
2206 #ifdef CONFIG_BLK_DEV_INITRD 2210 #ifdef CONFIG_BLK_DEV_INITRD
2207 void free_initrd_mem(unsigned long start, unsigned long end) 2211 void free_initrd_mem(unsigned long start, unsigned long end)
2208 { 2212 {
2209 free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM, 2213 free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2210 "initrd"); 2214 "initrd");
2211 } 2215 }
2212 #endif 2216 #endif
2213 2217
2214 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U) 2218 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2215 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V) 2219 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2216 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U) 2220 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2217 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V) 2221 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2218 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R) 2222 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2219 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R) 2223 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2220 2224
2221 pgprot_t PAGE_KERNEL __read_mostly; 2225 pgprot_t PAGE_KERNEL __read_mostly;
2222 EXPORT_SYMBOL(PAGE_KERNEL); 2226 EXPORT_SYMBOL(PAGE_KERNEL);
2223 2227
2224 pgprot_t PAGE_KERNEL_LOCKED __read_mostly; 2228 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2225 pgprot_t PAGE_COPY __read_mostly; 2229 pgprot_t PAGE_COPY __read_mostly;
2226 2230
2227 pgprot_t PAGE_SHARED __read_mostly; 2231 pgprot_t PAGE_SHARED __read_mostly;
2228 EXPORT_SYMBOL(PAGE_SHARED); 2232 EXPORT_SYMBOL(PAGE_SHARED);
2229 2233
2230 unsigned long pg_iobits __read_mostly; 2234 unsigned long pg_iobits __read_mostly;
2231 2235
2232 unsigned long _PAGE_IE __read_mostly; 2236 unsigned long _PAGE_IE __read_mostly;
2233 EXPORT_SYMBOL(_PAGE_IE); 2237 EXPORT_SYMBOL(_PAGE_IE);
2234 2238
2235 unsigned long _PAGE_E __read_mostly; 2239 unsigned long _PAGE_E __read_mostly;
2236 EXPORT_SYMBOL(_PAGE_E); 2240 EXPORT_SYMBOL(_PAGE_E);
2237 2241
2238 unsigned long _PAGE_CACHE __read_mostly; 2242 unsigned long _PAGE_CACHE __read_mostly;
2239 EXPORT_SYMBOL(_PAGE_CACHE); 2243 EXPORT_SYMBOL(_PAGE_CACHE);
2240 2244
2241 #ifdef CONFIG_SPARSEMEM_VMEMMAP 2245 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2242 unsigned long vmemmap_table[VMEMMAP_SIZE]; 2246 unsigned long vmemmap_table[VMEMMAP_SIZE];
2243 2247
2244 static long __meminitdata addr_start, addr_end; 2248 static long __meminitdata addr_start, addr_end;
2245 static int __meminitdata node_start; 2249 static int __meminitdata node_start;
2246 2250
2247 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend, 2251 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2248 int node) 2252 int node)
2249 { 2253 {
2250 unsigned long phys_start = (vstart - VMEMMAP_BASE); 2254 unsigned long phys_start = (vstart - VMEMMAP_BASE);
2251 unsigned long phys_end = (vend - VMEMMAP_BASE); 2255 unsigned long phys_end = (vend - VMEMMAP_BASE);
2252 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK; 2256 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2253 unsigned long end = VMEMMAP_ALIGN(phys_end); 2257 unsigned long end = VMEMMAP_ALIGN(phys_end);
2254 unsigned long pte_base; 2258 unsigned long pte_base;
2255 2259
2256 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U | 2260 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2257 _PAGE_CP_4U | _PAGE_CV_4U | 2261 _PAGE_CP_4U | _PAGE_CV_4U |
2258 _PAGE_P_4U | _PAGE_W_4U); 2262 _PAGE_P_4U | _PAGE_W_4U);
2259 if (tlb_type == hypervisor) 2263 if (tlb_type == hypervisor)
2260 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V | 2264 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2261 _PAGE_CP_4V | _PAGE_CV_4V | 2265 _PAGE_CP_4V | _PAGE_CV_4V |
2262 _PAGE_P_4V | _PAGE_W_4V); 2266 _PAGE_P_4V | _PAGE_W_4V);
2263 2267
2264 for (; addr < end; addr += VMEMMAP_CHUNK) { 2268 for (; addr < end; addr += VMEMMAP_CHUNK) {
2265 unsigned long *vmem_pp = 2269 unsigned long *vmem_pp =
2266 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT); 2270 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2267 void *block; 2271 void *block;
2268 2272
2269 if (!(*vmem_pp & _PAGE_VALID)) { 2273 if (!(*vmem_pp & _PAGE_VALID)) {
2270 block = vmemmap_alloc_block(1UL << ILOG2_4MB, node); 2274 block = vmemmap_alloc_block(1UL << ILOG2_4MB, node);
2271 if (!block) 2275 if (!block)
2272 return -ENOMEM; 2276 return -ENOMEM;
2273 2277
2274 *vmem_pp = pte_base | __pa(block); 2278 *vmem_pp = pte_base | __pa(block);
2275 2279
2276 /* check to see if we have contiguous blocks */ 2280 /* check to see if we have contiguous blocks */
2277 if (addr_end != addr || node_start != node) { 2281 if (addr_end != addr || node_start != node) {
2278 if (addr_start) 2282 if (addr_start)
2279 printk(KERN_DEBUG " [%lx-%lx] on node %d\n", 2283 printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2280 addr_start, addr_end-1, node_start); 2284 addr_start, addr_end-1, node_start);
2281 addr_start = addr; 2285 addr_start = addr;
2282 node_start = node; 2286 node_start = node;
2283 } 2287 }
2284 addr_end = addr + VMEMMAP_CHUNK; 2288 addr_end = addr + VMEMMAP_CHUNK;
2285 } 2289 }
2286 } 2290 }
2287 return 0; 2291 return 0;
2288 } 2292 }
2289 2293
2290 void __meminit vmemmap_populate_print_last(void) 2294 void __meminit vmemmap_populate_print_last(void)
2291 { 2295 {
2292 if (addr_start) { 2296 if (addr_start) {
2293 printk(KERN_DEBUG " [%lx-%lx] on node %d\n", 2297 printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2294 addr_start, addr_end-1, node_start); 2298 addr_start, addr_end-1, node_start);
2295 addr_start = 0; 2299 addr_start = 0;
2296 addr_end = 0; 2300 addr_end = 0;
2297 node_start = 0; 2301 node_start = 0;
2298 } 2302 }
2299 } 2303 }
2300 2304
2301 void vmemmap_free(unsigned long start, unsigned long end) 2305 void vmemmap_free(unsigned long start, unsigned long end)
2302 { 2306 {
2303 } 2307 }
2304 2308
2305 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 2309 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2306 2310
2307 static void prot_init_common(unsigned long page_none, 2311 static void prot_init_common(unsigned long page_none,
2308 unsigned long page_shared, 2312 unsigned long page_shared,
2309 unsigned long page_copy, 2313 unsigned long page_copy,
2310 unsigned long page_readonly, 2314 unsigned long page_readonly,
2311 unsigned long page_exec_bit) 2315 unsigned long page_exec_bit)
2312 { 2316 {
2313 PAGE_COPY = __pgprot(page_copy); 2317 PAGE_COPY = __pgprot(page_copy);
2314 PAGE_SHARED = __pgprot(page_shared); 2318 PAGE_SHARED = __pgprot(page_shared);
2315 2319
2316 protection_map[0x0] = __pgprot(page_none); 2320 protection_map[0x0] = __pgprot(page_none);
2317 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit); 2321 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2318 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit); 2322 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2319 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit); 2323 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2320 protection_map[0x4] = __pgprot(page_readonly); 2324 protection_map[0x4] = __pgprot(page_readonly);
2321 protection_map[0x5] = __pgprot(page_readonly); 2325 protection_map[0x5] = __pgprot(page_readonly);
2322 protection_map[0x6] = __pgprot(page_copy); 2326 protection_map[0x6] = __pgprot(page_copy);
2323 protection_map[0x7] = __pgprot(page_copy); 2327 protection_map[0x7] = __pgprot(page_copy);
2324 protection_map[0x8] = __pgprot(page_none); 2328 protection_map[0x8] = __pgprot(page_none);
2325 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit); 2329 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2326 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit); 2330 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2327 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit); 2331 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2328 protection_map[0xc] = __pgprot(page_readonly); 2332 protection_map[0xc] = __pgprot(page_readonly);
2329 protection_map[0xd] = __pgprot(page_readonly); 2333 protection_map[0xd] = __pgprot(page_readonly);
2330 protection_map[0xe] = __pgprot(page_shared); 2334 protection_map[0xe] = __pgprot(page_shared);
2331 protection_map[0xf] = __pgprot(page_shared); 2335 protection_map[0xf] = __pgprot(page_shared);
2332 } 2336 }
2333 2337
2334 static void __init sun4u_pgprot_init(void) 2338 static void __init sun4u_pgprot_init(void)
2335 { 2339 {
2336 unsigned long page_none, page_shared, page_copy, page_readonly; 2340 unsigned long page_none, page_shared, page_copy, page_readonly;
2337 unsigned long page_exec_bit; 2341 unsigned long page_exec_bit;
2338 int i; 2342 int i;
2339 2343
2340 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | 2344 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2341 _PAGE_CACHE_4U | _PAGE_P_4U | 2345 _PAGE_CACHE_4U | _PAGE_P_4U |
2342 __ACCESS_BITS_4U | __DIRTY_BITS_4U | 2346 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2343 _PAGE_EXEC_4U); 2347 _PAGE_EXEC_4U);
2344 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | 2348 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2345 _PAGE_CACHE_4U | _PAGE_P_4U | 2349 _PAGE_CACHE_4U | _PAGE_P_4U |
2346 __ACCESS_BITS_4U | __DIRTY_BITS_4U | 2350 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2347 _PAGE_EXEC_4U | _PAGE_L_4U); 2351 _PAGE_EXEC_4U | _PAGE_L_4U);
2348 2352
2349 _PAGE_IE = _PAGE_IE_4U; 2353 _PAGE_IE = _PAGE_IE_4U;
2350 _PAGE_E = _PAGE_E_4U; 2354 _PAGE_E = _PAGE_E_4U;
2351 _PAGE_CACHE = _PAGE_CACHE_4U; 2355 _PAGE_CACHE = _PAGE_CACHE_4U;
2352 2356
2353 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U | 2357 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2354 __ACCESS_BITS_4U | _PAGE_E_4U); 2358 __ACCESS_BITS_4U | _PAGE_E_4U);
2355 2359
2356 #ifdef CONFIG_DEBUG_PAGEALLOC 2360 #ifdef CONFIG_DEBUG_PAGEALLOC
2357 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET; 2361 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2358 #else 2362 #else
2359 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^ 2363 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2360 PAGE_OFFSET; 2364 PAGE_OFFSET;
2361 #endif 2365 #endif
2362 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U | 2366 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2363 _PAGE_P_4U | _PAGE_W_4U); 2367 _PAGE_P_4U | _PAGE_W_4U);
2364 2368
2365 for (i = 1; i < 4; i++) 2369 for (i = 1; i < 4; i++)
2366 kern_linear_pte_xor[i] = kern_linear_pte_xor[0]; 2370 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2367 2371
2368 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U | 2372 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2369 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U | 2373 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2370 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U); 2374 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2371 2375
2372 2376
2373 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U; 2377 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2374 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2378 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2375 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U); 2379 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2376 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2380 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2377 __ACCESS_BITS_4U | _PAGE_EXEC_4U); 2381 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2378 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2382 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2379 __ACCESS_BITS_4U | _PAGE_EXEC_4U); 2383 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2380 2384
2381 page_exec_bit = _PAGE_EXEC_4U; 2385 page_exec_bit = _PAGE_EXEC_4U;
2382 2386
2383 prot_init_common(page_none, page_shared, page_copy, page_readonly, 2387 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2384 page_exec_bit); 2388 page_exec_bit);
2385 } 2389 }
2386 2390
2387 static void __init sun4v_pgprot_init(void) 2391 static void __init sun4v_pgprot_init(void)
2388 { 2392 {
2389 unsigned long page_none, page_shared, page_copy, page_readonly; 2393 unsigned long page_none, page_shared, page_copy, page_readonly;
2390 unsigned long page_exec_bit; 2394 unsigned long page_exec_bit;
2391 int i; 2395 int i;
2392 2396
2393 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID | 2397 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2394 _PAGE_CACHE_4V | _PAGE_P_4V | 2398 _PAGE_CACHE_4V | _PAGE_P_4V |
2395 __ACCESS_BITS_4V | __DIRTY_BITS_4V | 2399 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2396 _PAGE_EXEC_4V); 2400 _PAGE_EXEC_4V);
2397 PAGE_KERNEL_LOCKED = PAGE_KERNEL; 2401 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2398 2402
2399 _PAGE_IE = _PAGE_IE_4V; 2403 _PAGE_IE = _PAGE_IE_4V;
2400 _PAGE_E = _PAGE_E_4V; 2404 _PAGE_E = _PAGE_E_4V;
2401 _PAGE_CACHE = _PAGE_CACHE_4V; 2405 _PAGE_CACHE = _PAGE_CACHE_4V;
2402 2406
2403 #ifdef CONFIG_DEBUG_PAGEALLOC 2407 #ifdef CONFIG_DEBUG_PAGEALLOC
2404 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET; 2408 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2405 #else 2409 #else
2406 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^ 2410 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2407 PAGE_OFFSET; 2411 PAGE_OFFSET;
2408 #endif 2412 #endif
2409 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V | 2413 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2410 _PAGE_P_4V | _PAGE_W_4V); 2414 _PAGE_P_4V | _PAGE_W_4V);
2411 2415
2412 for (i = 1; i < 4; i++) 2416 for (i = 1; i < 4; i++)
2413 kern_linear_pte_xor[i] = kern_linear_pte_xor[0]; 2417 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2414 2418
2415 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V | 2419 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2416 __ACCESS_BITS_4V | _PAGE_E_4V); 2420 __ACCESS_BITS_4V | _PAGE_E_4V);
2417 2421
2418 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V | 2422 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2419 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V | 2423 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2420 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V | 2424 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2421 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V); 2425 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2422 2426
2423 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V; 2427 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2424 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | 2428 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2425 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V); 2429 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2426 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | 2430 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2427 __ACCESS_BITS_4V | _PAGE_EXEC_4V); 2431 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2428 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | 2432 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2429 __ACCESS_BITS_4V | _PAGE_EXEC_4V); 2433 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2430 2434
2431 page_exec_bit = _PAGE_EXEC_4V; 2435 page_exec_bit = _PAGE_EXEC_4V;
2432 2436
2433 prot_init_common(page_none, page_shared, page_copy, page_readonly, 2437 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2434 page_exec_bit); 2438 page_exec_bit);
2435 } 2439 }
2436 2440
2437 unsigned long pte_sz_bits(unsigned long sz) 2441 unsigned long pte_sz_bits(unsigned long sz)
2438 { 2442 {
2439 if (tlb_type == hypervisor) { 2443 if (tlb_type == hypervisor) {
2440 switch (sz) { 2444 switch (sz) {
2441 case 8 * 1024: 2445 case 8 * 1024:
2442 default: 2446 default:
2443 return _PAGE_SZ8K_4V; 2447 return _PAGE_SZ8K_4V;
2444 case 64 * 1024: 2448 case 64 * 1024:
2445 return _PAGE_SZ64K_4V; 2449 return _PAGE_SZ64K_4V;
2446 case 512 * 1024: 2450 case 512 * 1024:
2447 return _PAGE_SZ512K_4V; 2451 return _PAGE_SZ512K_4V;
2448 case 4 * 1024 * 1024: 2452 case 4 * 1024 * 1024:
2449 return _PAGE_SZ4MB_4V; 2453 return _PAGE_SZ4MB_4V;
2450 } 2454 }
2451 } else { 2455 } else {
2452 switch (sz) { 2456 switch (sz) {
2453 case 8 * 1024: 2457 case 8 * 1024:
2454 default: 2458 default:
2455 return _PAGE_SZ8K_4U; 2459 return _PAGE_SZ8K_4U;
2456 case 64 * 1024: 2460 case 64 * 1024:
2457 return _PAGE_SZ64K_4U; 2461 return _PAGE_SZ64K_4U;
2458 case 512 * 1024: 2462 case 512 * 1024:
2459 return _PAGE_SZ512K_4U; 2463 return _PAGE_SZ512K_4U;
2460 case 4 * 1024 * 1024: 2464 case 4 * 1024 * 1024:
2461 return _PAGE_SZ4MB_4U; 2465 return _PAGE_SZ4MB_4U;
2462 } 2466 }
2463 } 2467 }
2464 } 2468 }
2465 2469
2466 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size) 2470 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2467 { 2471 {
2468 pte_t pte; 2472 pte_t pte;
2469 2473
2470 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot)); 2474 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2471 pte_val(pte) |= (((unsigned long)space) << 32); 2475 pte_val(pte) |= (((unsigned long)space) << 32);
2472 pte_val(pte) |= pte_sz_bits(page_size); 2476 pte_val(pte) |= pte_sz_bits(page_size);
2473 2477
2474 return pte; 2478 return pte;
2475 } 2479 }
2476 2480
2477 static unsigned long kern_large_tte(unsigned long paddr) 2481 static unsigned long kern_large_tte(unsigned long paddr)
2478 { 2482 {
2479 unsigned long val; 2483 unsigned long val;
2480 2484
2481 val = (_PAGE_VALID | _PAGE_SZ4MB_4U | 2485 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2482 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U | 2486 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2483 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U); 2487 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2484 if (tlb_type == hypervisor) 2488 if (tlb_type == hypervisor)
2485 val = (_PAGE_VALID | _PAGE_SZ4MB_4V | 2489 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2486 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V | 2490 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2487 _PAGE_EXEC_4V | _PAGE_W_4V); 2491 _PAGE_EXEC_4V | _PAGE_W_4V);
2488 2492
2489 return val | paddr; 2493 return val | paddr;
2490 } 2494 }
2491 2495
2492 /* If not locked, zap it. */ 2496 /* If not locked, zap it. */
2493 void __flush_tlb_all(void) 2497 void __flush_tlb_all(void)
2494 { 2498 {
2495 unsigned long pstate; 2499 unsigned long pstate;
2496 int i; 2500 int i;
2497 2501
2498 __asm__ __volatile__("flushw\n\t" 2502 __asm__ __volatile__("flushw\n\t"
2499 "rdpr %%pstate, %0\n\t" 2503 "rdpr %%pstate, %0\n\t"
2500 "wrpr %0, %1, %%pstate" 2504 "wrpr %0, %1, %%pstate"
2501 : "=r" (pstate) 2505 : "=r" (pstate)
2502 : "i" (PSTATE_IE)); 2506 : "i" (PSTATE_IE));
2503 if (tlb_type == hypervisor) { 2507 if (tlb_type == hypervisor) {
2504 sun4v_mmu_demap_all(); 2508 sun4v_mmu_demap_all();
2505 } else if (tlb_type == spitfire) { 2509 } else if (tlb_type == spitfire) {
2506 for (i = 0; i < 64; i++) { 2510 for (i = 0; i < 64; i++) {
2507 /* Spitfire Errata #32 workaround */ 2511 /* Spitfire Errata #32 workaround */
2508 /* NOTE: Always runs on spitfire, so no 2512 /* NOTE: Always runs on spitfire, so no
2509 * cheetah+ page size encodings. 2513 * cheetah+ page size encodings.
2510 */ 2514 */
2511 __asm__ __volatile__("stxa %0, [%1] %2\n\t" 2515 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2512 "flush %%g6" 2516 "flush %%g6"
2513 : /* No outputs */ 2517 : /* No outputs */
2514 : "r" (0), 2518 : "r" (0),
2515 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); 2519 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2516 2520
2517 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) { 2521 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2518 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 2522 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2519 "membar #Sync" 2523 "membar #Sync"
2520 : /* no outputs */ 2524 : /* no outputs */
2521 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); 2525 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2522 spitfire_put_dtlb_data(i, 0x0UL); 2526 spitfire_put_dtlb_data(i, 0x0UL);
2523 } 2527 }
2524 2528
2525 /* Spitfire Errata #32 workaround */ 2529 /* Spitfire Errata #32 workaround */
2526 /* NOTE: Always runs on spitfire, so no 2530 /* NOTE: Always runs on spitfire, so no
2527 * cheetah+ page size encodings. 2531 * cheetah+ page size encodings.
2528 */ 2532 */
2529 __asm__ __volatile__("stxa %0, [%1] %2\n\t" 2533 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2530 "flush %%g6" 2534 "flush %%g6"
2531 : /* No outputs */ 2535 : /* No outputs */
2532 : "r" (0), 2536 : "r" (0),
2533 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); 2537 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2534 2538
2535 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) { 2539 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2536 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 2540 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2537 "membar #Sync" 2541 "membar #Sync"
2538 : /* no outputs */ 2542 : /* no outputs */
2539 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU)); 2543 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2540 spitfire_put_itlb_data(i, 0x0UL); 2544 spitfire_put_itlb_data(i, 0x0UL);
2541 } 2545 }
2542 } 2546 }
2543 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 2547 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2544 cheetah_flush_dtlb_all(); 2548 cheetah_flush_dtlb_all();
2545 cheetah_flush_itlb_all(); 2549 cheetah_flush_itlb_all();
2546 } 2550 }
2547 __asm__ __volatile__("wrpr %0, 0, %%pstate" 2551 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2548 : : "r" (pstate)); 2552 : : "r" (pstate));
2549 } 2553 }
2550 2554
2551 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, 2555 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2552 unsigned long address) 2556 unsigned long address)
2553 { 2557 {
2554 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | 2558 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2555 __GFP_REPEAT | __GFP_ZERO); 2559 __GFP_REPEAT | __GFP_ZERO);
2556 pte_t *pte = NULL; 2560 pte_t *pte = NULL;
2557 2561
2558 if (page) 2562 if (page)
2559 pte = (pte_t *) page_address(page); 2563 pte = (pte_t *) page_address(page);
2560 2564
2561 return pte; 2565 return pte;
2562 } 2566 }
2563 2567
2564 pgtable_t pte_alloc_one(struct mm_struct *mm, 2568 pgtable_t pte_alloc_one(struct mm_struct *mm,
2565 unsigned long address) 2569 unsigned long address)
2566 { 2570 {
2567 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | 2571 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2568 __GFP_REPEAT | __GFP_ZERO); 2572 __GFP_REPEAT | __GFP_ZERO);
2569 if (!page) 2573 if (!page)
2570 return NULL; 2574 return NULL;
2571 if (!pgtable_page_ctor(page)) { 2575 if (!pgtable_page_ctor(page)) {
2572 free_hot_cold_page(page, 0); 2576 free_hot_cold_page(page, 0);
2573 return NULL; 2577 return NULL;
2574 } 2578 }
2575 return (pte_t *) page_address(page); 2579 return (pte_t *) page_address(page);
2576 } 2580 }
2577 2581
2578 void pte_free_kernel(struct mm_struct *mm, pte_t *pte) 2582 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2579 { 2583 {
2580 free_page((unsigned long)pte); 2584 free_page((unsigned long)pte);
2581 } 2585 }
2582 2586
2583 static void __pte_free(pgtable_t pte) 2587 static void __pte_free(pgtable_t pte)
2584 { 2588 {
2585 struct page *page = virt_to_page(pte); 2589 struct page *page = virt_to_page(pte);
2586 2590
2587 pgtable_page_dtor(page); 2591 pgtable_page_dtor(page);
2588 __free_page(page); 2592 __free_page(page);
2589 } 2593 }
2590 2594
2591 void pte_free(struct mm_struct *mm, pgtable_t pte) 2595 void pte_free(struct mm_struct *mm, pgtable_t pte)
2592 { 2596 {
2593 __pte_free(pte); 2597 __pte_free(pte);
2594 } 2598 }
2595 2599
2596 void pgtable_free(void *table, bool is_page) 2600 void pgtable_free(void *table, bool is_page)
2597 { 2601 {
2598 if (is_page) 2602 if (is_page)
2599 __pte_free(table); 2603 __pte_free(table);
2600 else 2604 else
2601 kmem_cache_free(pgtable_cache, table); 2605 kmem_cache_free(pgtable_cache, table);
2602 } 2606 }
2603 2607
2604 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2608 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2605 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, 2609 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2606 pmd_t *pmd) 2610 pmd_t *pmd)
2607 { 2611 {
2608 unsigned long pte, flags; 2612 unsigned long pte, flags;
2609 struct mm_struct *mm; 2613 struct mm_struct *mm;
2610 pmd_t entry = *pmd; 2614 pmd_t entry = *pmd;
2611 2615
2612 if (!pmd_large(entry) || !pmd_young(entry)) 2616 if (!pmd_large(entry) || !pmd_young(entry))
2613 return; 2617 return;
2614 2618
2615 pte = pmd_val(entry); 2619 pte = pmd_val(entry);
2620
2621 /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */
2622 if (!(pte & _PAGE_VALID))
2623 return;
2616 2624
2617 /* We are fabricating 8MB pages using 4MB real hw pages. */ 2625 /* We are fabricating 8MB pages using 4MB real hw pages. */
2618 pte |= (addr & (1UL << REAL_HPAGE_SHIFT)); 2626 pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2619 2627
2620 mm = vma->vm_mm; 2628 mm = vma->vm_mm;
2621 2629
2622 spin_lock_irqsave(&mm->context.lock, flags); 2630 spin_lock_irqsave(&mm->context.lock, flags);
2623 2631
2624 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) 2632 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2625 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT, 2633 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2626 addr, pte); 2634 addr, pte);
2627 2635
2628 spin_unlock_irqrestore(&mm->context.lock, flags); 2636 spin_unlock_irqrestore(&mm->context.lock, flags);
2629 } 2637 }
2630 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2638 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2631 2639
2632 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 2640 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2633 static void context_reload(void *__data) 2641 static void context_reload(void *__data)
2634 { 2642 {
2635 struct mm_struct *mm = __data; 2643 struct mm_struct *mm = __data;
2636 2644
2637 if (mm == current->mm) 2645 if (mm == current->mm)
2638 load_secondary_context(mm); 2646 load_secondary_context(mm);
2639 } 2647 }
2640 2648
2641 void hugetlb_setup(struct pt_regs *regs) 2649 void hugetlb_setup(struct pt_regs *regs)
2642 { 2650 {
2643 struct mm_struct *mm = current->mm; 2651 struct mm_struct *mm = current->mm;
2644 struct tsb_config *tp; 2652 struct tsb_config *tp;
2645 2653
2646 if (in_atomic() || !mm) { 2654 if (in_atomic() || !mm) {
2647 const struct exception_table_entry *entry; 2655 const struct exception_table_entry *entry;
2648 2656
2649 entry = search_exception_tables(regs->tpc); 2657 entry = search_exception_tables(regs->tpc);
2650 if (entry) { 2658 if (entry) {
2651 regs->tpc = entry->fixup; 2659 regs->tpc = entry->fixup;
2652 regs->tnpc = regs->tpc + 4; 2660 regs->tnpc = regs->tpc + 4;
2653 return; 2661 return;
2654 } 2662 }
2655 pr_alert("Unexpected HugeTLB setup in atomic context.\n"); 2663 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2656 die_if_kernel("HugeTSB in atomic", regs); 2664 die_if_kernel("HugeTSB in atomic", regs);
2657 } 2665 }
2658 2666
2659 tp = &mm->context.tsb_block[MM_TSB_HUGE]; 2667 tp = &mm->context.tsb_block[MM_TSB_HUGE];
2660 if (likely(tp->tsb == NULL)) 2668 if (likely(tp->tsb == NULL))
2661 tsb_grow(mm, MM_TSB_HUGE, 0); 2669 tsb_grow(mm, MM_TSB_HUGE, 0);
2662 2670
2663 tsb_context_switch(mm); 2671 tsb_context_switch(mm);
2664 smp_tsb_sync(mm); 2672 smp_tsb_sync(mm);
2665 2673
2666 /* On UltraSPARC-III+ and later, configure the second half of 2674 /* On UltraSPARC-III+ and later, configure the second half of
2667 * the Data-TLB for huge pages. 2675 * the Data-TLB for huge pages.
2668 */ 2676 */
2669 if (tlb_type == cheetah_plus) { 2677 if (tlb_type == cheetah_plus) {
2670 unsigned long ctx; 2678 unsigned long ctx;
2671 2679
2672 spin_lock(&ctx_alloc_lock); 2680 spin_lock(&ctx_alloc_lock);
2673 ctx = mm->context.sparc64_ctx_val; 2681 ctx = mm->context.sparc64_ctx_val;
2674 ctx &= ~CTX_PGSZ_MASK; 2682 ctx &= ~CTX_PGSZ_MASK;
2675 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT; 2683 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2676 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT; 2684 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2677 2685
2678 if (ctx != mm->context.sparc64_ctx_val) { 2686 if (ctx != mm->context.sparc64_ctx_val) {
2679 /* When changing the page size fields, we 2687 /* When changing the page size fields, we
2680 * must perform a context flush so that no 2688 * must perform a context flush so that no
2681 * stale entries match. This flush must 2689 * stale entries match. This flush must
2682 * occur with the original context register 2690 * occur with the original context register
2683 * settings. 2691 * settings.
2684 */ 2692 */
2685 do_flush_tlb_mm(mm); 2693 do_flush_tlb_mm(mm);
2686 2694
2687 /* Reload the context register of all processors 2695 /* Reload the context register of all processors
2688 * also executing in this address space. 2696 * also executing in this address space.
2689 */ 2697 */
2690 mm->context.sparc64_ctx_val = ctx; 2698 mm->context.sparc64_ctx_val = ctx;
2691 on_each_cpu(context_reload, mm, 0); 2699 on_each_cpu(context_reload, mm, 0);
2692 } 2700 }
2693 spin_unlock(&ctx_alloc_lock); 2701 spin_unlock(&ctx_alloc_lock);
2694 } 2702 }
2695 } 2703 }
2696 #endif 2704 #endif
2697 2705