Commit 67ce04bf2746f8a1f8c2a104b313d20c63f68378

Authored by Vimal Singh
Committed by David Woodhouse
1 parent 4938c88c92

mtd: nand: add OMAP2/OMAP3 NAND driver

This driver is present in the OMAP tree, now pushing it to MTD.

Original author(s):
       Jian Zhang <jzhang@ti.com>

Signed-off-by: Vimal Singh <vimalsingh@ti.com>
Cc: Jian Zhang <jzhang@ti.com>
Cc: Artem Bityutskiy <dedekind@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>

Showing 3 changed files with 783 additions and 0 deletions Side-by-side Diff

drivers/mtd/nand/Kconfig
... ... @@ -74,6 +74,12 @@
74 74 help
75 75 Support for NAND flash on Amstrad E3 (Delta).
76 76  
  77 +config MTD_NAND_OMAP2
  78 + tristate "NAND Flash device on OMAP2 and OMAP3"
  79 + depends on ARM && MTD_NAND && (ARCH_OMAP2 || ARCH_OMAP3)
  80 + help
  81 + Support for NAND flash on Texas Instruments OMAP2 and OMAP3 platforms.
  82 +
77 83 config MTD_NAND_TS7250
78 84 tristate "NAND Flash device on TS-7250 board"
79 85 depends on MACH_TS72XX
drivers/mtd/nand/Makefile
... ... @@ -25,6 +25,7 @@
25 25 obj-$(CONFIG_MTD_NAND_NDFC) += ndfc.o
26 26 obj-$(CONFIG_MTD_NAND_ATMEL) += atmel_nand.o
27 27 obj-$(CONFIG_MTD_NAND_GPIO) += gpio.o
  28 +obj-$(CONFIG_MTD_NAND_OMAP2) += omap2.o
28 29 obj-$(CONFIG_MTD_NAND_CM_X270) += cmx270_nand.o
29 30 obj-$(CONFIG_MTD_NAND_BASLER_EXCITE) += excite_nandflash.o
30 31 obj-$(CONFIG_MTD_NAND_PXA3xx) += pxa3xx_nand.o
drivers/mtd/nand/omap2.c
  1 +/*
  2 + * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
  3 + * Copyright © 2004 Micron Technology Inc.
  4 + * Copyright © 2004 David Brownell
  5 + *
  6 + * This program is free software; you can redistribute it and/or modify
  7 + * it under the terms of the GNU General Public License version 2 as
  8 + * published by the Free Software Foundation.
  9 + */
  10 +
  11 +#include <linux/platform_device.h>
  12 +#include <linux/dma-mapping.h>
  13 +#include <linux/delay.h>
  14 +#include <linux/mtd/mtd.h>
  15 +#include <linux/mtd/nand.h>
  16 +#include <linux/mtd/partitions.h>
  17 +#include <linux/io.h>
  18 +
  19 +#include <asm/dma.h>
  20 +
  21 +#include <mach/gpmc.h>
  22 +#include <mach/nand.h>
  23 +
  24 +#define GPMC_IRQ_STATUS 0x18
  25 +#define GPMC_ECC_CONFIG 0x1F4
  26 +#define GPMC_ECC_CONTROL 0x1F8
  27 +#define GPMC_ECC_SIZE_CONFIG 0x1FC
  28 +#define GPMC_ECC1_RESULT 0x200
  29 +
  30 +#define DRIVER_NAME "omap2-nand"
  31 +
  32 +/* size (4 KiB) for IO mapping */
  33 +#define NAND_IO_SIZE SZ_4K
  34 +
  35 +#define NAND_WP_OFF 0
  36 +#define NAND_WP_BIT 0x00000010
  37 +#define WR_RD_PIN_MONITORING 0x00600000
  38 +
  39 +#define GPMC_BUF_FULL 0x00000001
  40 +#define GPMC_BUF_EMPTY 0x00000000
  41 +
  42 +#define NAND_Ecc_P1e (1 << 0)
  43 +#define NAND_Ecc_P2e (1 << 1)
  44 +#define NAND_Ecc_P4e (1 << 2)
  45 +#define NAND_Ecc_P8e (1 << 3)
  46 +#define NAND_Ecc_P16e (1 << 4)
  47 +#define NAND_Ecc_P32e (1 << 5)
  48 +#define NAND_Ecc_P64e (1 << 6)
  49 +#define NAND_Ecc_P128e (1 << 7)
  50 +#define NAND_Ecc_P256e (1 << 8)
  51 +#define NAND_Ecc_P512e (1 << 9)
  52 +#define NAND_Ecc_P1024e (1 << 10)
  53 +#define NAND_Ecc_P2048e (1 << 11)
  54 +
  55 +#define NAND_Ecc_P1o (1 << 16)
  56 +#define NAND_Ecc_P2o (1 << 17)
  57 +#define NAND_Ecc_P4o (1 << 18)
  58 +#define NAND_Ecc_P8o (1 << 19)
  59 +#define NAND_Ecc_P16o (1 << 20)
  60 +#define NAND_Ecc_P32o (1 << 21)
  61 +#define NAND_Ecc_P64o (1 << 22)
  62 +#define NAND_Ecc_P128o (1 << 23)
  63 +#define NAND_Ecc_P256o (1 << 24)
  64 +#define NAND_Ecc_P512o (1 << 25)
  65 +#define NAND_Ecc_P1024o (1 << 26)
  66 +#define NAND_Ecc_P2048o (1 << 27)
  67 +
  68 +#define TF(value) (value ? 1 : 0)
  69 +
  70 +#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
  71 +#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
  72 +#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
  73 +#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
  74 +#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
  75 +#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
  76 +#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
  77 +#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
  78 +
  79 +#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
  80 +#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
  81 +#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
  82 +#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
  83 +#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
  84 +#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
  85 +#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
  86 +#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
  87 +
  88 +#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
  89 +#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
  90 +#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
  91 +#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
  92 +#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
  93 +#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
  94 +#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
  95 +#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
  96 +
  97 +#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
  98 +#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
  99 +#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
  100 +#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
  101 +#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
  102 +#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
  103 +#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
  104 +#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
  105 +
  106 +#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
  107 +#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
  108 +
  109 +#ifdef CONFIG_MTD_PARTITIONS
  110 +static const char *part_probes[] = { "cmdlinepart", NULL };
  111 +#endif
  112 +
  113 +struct omap_nand_info {
  114 + struct nand_hw_control controller;
  115 + struct omap_nand_platform_data *pdata;
  116 + struct mtd_info mtd;
  117 + struct mtd_partition *parts;
  118 + struct nand_chip nand;
  119 + struct platform_device *pdev;
  120 +
  121 + int gpmc_cs;
  122 + unsigned long phys_base;
  123 + void __iomem *gpmc_cs_baseaddr;
  124 + void __iomem *gpmc_baseaddr;
  125 +};
  126 +
  127 +/**
  128 + * omap_nand_wp - This function enable or disable the Write Protect feature
  129 + * @mtd: MTD device structure
  130 + * @mode: WP ON/OFF
  131 + */
  132 +static void omap_nand_wp(struct mtd_info *mtd, int mode)
  133 +{
  134 + struct omap_nand_info *info = container_of(mtd,
  135 + struct omap_nand_info, mtd);
  136 +
  137 + unsigned long config = __raw_readl(info->gpmc_baseaddr + GPMC_CONFIG);
  138 +
  139 + if (mode)
  140 + config &= ~(NAND_WP_BIT); /* WP is ON */
  141 + else
  142 + config |= (NAND_WP_BIT); /* WP is OFF */
  143 +
  144 + __raw_writel(config, (info->gpmc_baseaddr + GPMC_CONFIG));
  145 +}
  146 +
  147 +/**
  148 + * omap_hwcontrol - hardware specific access to control-lines
  149 + * @mtd: MTD device structure
  150 + * @cmd: command to device
  151 + * @ctrl:
  152 + * NAND_NCE: bit 0 -> don't care
  153 + * NAND_CLE: bit 1 -> Command Latch
  154 + * NAND_ALE: bit 2 -> Address Latch
  155 + *
  156 + * NOTE: boards may use different bits for these!!
  157 + */
  158 +static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
  159 +{
  160 + struct omap_nand_info *info = container_of(mtd,
  161 + struct omap_nand_info, mtd);
  162 + switch (ctrl) {
  163 + case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
  164 + info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
  165 + GPMC_CS_NAND_COMMAND;
  166 + info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
  167 + GPMC_CS_NAND_DATA;
  168 + break;
  169 +
  170 + case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
  171 + info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
  172 + GPMC_CS_NAND_ADDRESS;
  173 + info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
  174 + GPMC_CS_NAND_DATA;
  175 + break;
  176 +
  177 + case NAND_CTRL_CHANGE | NAND_NCE:
  178 + info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
  179 + GPMC_CS_NAND_DATA;
  180 + info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
  181 + GPMC_CS_NAND_DATA;
  182 + break;
  183 + }
  184 +
  185 + if (cmd != NAND_CMD_NONE)
  186 + __raw_writeb(cmd, info->nand.IO_ADDR_W);
  187 +}
  188 +
  189 +/**
  190 + * omap_read_buf16 - read data from NAND controller into buffer
  191 + * @mtd: MTD device structure
  192 + * @buf: buffer to store date
  193 + * @len: number of bytes to read
  194 + */
  195 +static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
  196 +{
  197 + struct nand_chip *nand = mtd->priv;
  198 +
  199 + __raw_readsw(nand->IO_ADDR_R, buf, len / 2);
  200 +}
  201 +
  202 +/**
  203 + * omap_write_buf16 - write buffer to NAND controller
  204 + * @mtd: MTD device structure
  205 + * @buf: data buffer
  206 + * @len: number of bytes to write
  207 + */
  208 +static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
  209 +{
  210 + struct omap_nand_info *info = container_of(mtd,
  211 + struct omap_nand_info, mtd);
  212 + u16 *p = (u16 *) buf;
  213 +
  214 + /* FIXME try bursts of writesw() or DMA ... */
  215 + len >>= 1;
  216 +
  217 + while (len--) {
  218 + writew(*p++, info->nand.IO_ADDR_W);
  219 +
  220 + while (GPMC_BUF_EMPTY == (readl(info->gpmc_baseaddr +
  221 + GPMC_STATUS) & GPMC_BUF_FULL))
  222 + ;
  223 + }
  224 +}
  225 +/**
  226 + * omap_verify_buf - Verify chip data against buffer
  227 + * @mtd: MTD device structure
  228 + * @buf: buffer containing the data to compare
  229 + * @len: number of bytes to compare
  230 + */
  231 +static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
  232 +{
  233 + struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
  234 + mtd);
  235 + u16 *p = (u16 *) buf;
  236 +
  237 + len >>= 1;
  238 + while (len--) {
  239 + if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
  240 + return -EFAULT;
  241 + }
  242 +
  243 + return 0;
  244 +}
  245 +
  246 +#ifdef CONFIG_MTD_NAND_OMAP_HWECC
  247 +/**
  248 + * omap_hwecc_init - Initialize the HW ECC for NAND flash in GPMC controller
  249 + * @mtd: MTD device structure
  250 + */
  251 +static void omap_hwecc_init(struct mtd_info *mtd)
  252 +{
  253 + struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
  254 + mtd);
  255 + struct nand_chip *chip = mtd->priv;
  256 + unsigned long val = 0x0;
  257 +
  258 + /* Read from ECC Control Register */
  259 + val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONTROL);
  260 + /* Clear all ECC | Enable Reg1 */
  261 + val = ((0x00000001<<8) | 0x00000001);
  262 + __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
  263 +
  264 + /* Read from ECC Size Config Register */
  265 + val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG);
  266 + /* ECCSIZE1=512 | Select eccResultsize[0-3] */
  267 + val = ((((chip->ecc.size >> 1) - 1) << 22) | (0x0000000F));
  268 + __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG);
  269 +}
  270 +
  271 +/**
  272 + * gen_true_ecc - This function will generate true ECC value
  273 + * @ecc_buf: buffer to store ecc code
  274 + *
  275 + * This generated true ECC value can be used when correcting
  276 + * data read from NAND flash memory core
  277 + */
  278 +static void gen_true_ecc(u8 *ecc_buf)
  279 +{
  280 + u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
  281 + ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
  282 +
  283 + ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
  284 + P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
  285 + ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
  286 + P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
  287 + ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
  288 + P1e(tmp) | P2048o(tmp) | P2048e(tmp));
  289 +}
  290 +
  291 +/**
  292 + * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
  293 + * @ecc_data1: ecc code from nand spare area
  294 + * @ecc_data2: ecc code from hardware register obtained from hardware ecc
  295 + * @page_data: page data
  296 + *
  297 + * This function compares two ECC's and indicates if there is an error.
  298 + * If the error can be corrected it will be corrected to the buffer.
  299 + */
  300 +static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
  301 + u8 *ecc_data2, /* read from register */
  302 + u8 *page_data)
  303 +{
  304 + uint i;
  305 + u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
  306 + u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
  307 + u8 ecc_bit[24];
  308 + u8 ecc_sum = 0;
  309 + u8 find_bit = 0;
  310 + uint find_byte = 0;
  311 + int isEccFF;
  312 +
  313 + isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
  314 +
  315 + gen_true_ecc(ecc_data1);
  316 + gen_true_ecc(ecc_data2);
  317 +
  318 + for (i = 0; i <= 2; i++) {
  319 + *(ecc_data1 + i) = ~(*(ecc_data1 + i));
  320 + *(ecc_data2 + i) = ~(*(ecc_data2 + i));
  321 + }
  322 +
  323 + for (i = 0; i < 8; i++) {
  324 + tmp0_bit[i] = *ecc_data1 % 2;
  325 + *ecc_data1 = *ecc_data1 / 2;
  326 + }
  327 +
  328 + for (i = 0; i < 8; i++) {
  329 + tmp1_bit[i] = *(ecc_data1 + 1) % 2;
  330 + *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
  331 + }
  332 +
  333 + for (i = 0; i < 8; i++) {
  334 + tmp2_bit[i] = *(ecc_data1 + 2) % 2;
  335 + *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
  336 + }
  337 +
  338 + for (i = 0; i < 8; i++) {
  339 + comp0_bit[i] = *ecc_data2 % 2;
  340 + *ecc_data2 = *ecc_data2 / 2;
  341 + }
  342 +
  343 + for (i = 0; i < 8; i++) {
  344 + comp1_bit[i] = *(ecc_data2 + 1) % 2;
  345 + *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
  346 + }
  347 +
  348 + for (i = 0; i < 8; i++) {
  349 + comp2_bit[i] = *(ecc_data2 + 2) % 2;
  350 + *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
  351 + }
  352 +
  353 + for (i = 0; i < 6; i++)
  354 + ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
  355 +
  356 + for (i = 0; i < 8; i++)
  357 + ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
  358 +
  359 + for (i = 0; i < 8; i++)
  360 + ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
  361 +
  362 + ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
  363 + ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
  364 +
  365 + for (i = 0; i < 24; i++)
  366 + ecc_sum += ecc_bit[i];
  367 +
  368 + switch (ecc_sum) {
  369 + case 0:
  370 + /* Not reached because this function is not called if
  371 + * ECC values are equal
  372 + */
  373 + return 0;
  374 +
  375 + case 1:
  376 + /* Uncorrectable error */
  377 + DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
  378 + return -1;
  379 +
  380 + case 11:
  381 + /* UN-Correctable error */
  382 + DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n");
  383 + return -1;
  384 +
  385 + case 12:
  386 + /* Correctable error */
  387 + find_byte = (ecc_bit[23] << 8) +
  388 + (ecc_bit[21] << 7) +
  389 + (ecc_bit[19] << 6) +
  390 + (ecc_bit[17] << 5) +
  391 + (ecc_bit[15] << 4) +
  392 + (ecc_bit[13] << 3) +
  393 + (ecc_bit[11] << 2) +
  394 + (ecc_bit[9] << 1) +
  395 + ecc_bit[7];
  396 +
  397 + find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
  398 +
  399 + DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at "
  400 + "offset: %d, bit: %d\n", find_byte, find_bit);
  401 +
  402 + page_data[find_byte] ^= (1 << find_bit);
  403 +
  404 + return 0;
  405 + default:
  406 + if (isEccFF) {
  407 + if (ecc_data2[0] == 0 &&
  408 + ecc_data2[1] == 0 &&
  409 + ecc_data2[2] == 0)
  410 + return 0;
  411 + }
  412 + DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
  413 + return -1;
  414 + }
  415 +}
  416 +
  417 +/**
  418 + * omap_correct_data - Compares the ECC read with HW generated ECC
  419 + * @mtd: MTD device structure
  420 + * @dat: page data
  421 + * @read_ecc: ecc read from nand flash
  422 + * @calc_ecc: ecc read from HW ECC registers
  423 + *
  424 + * Compares the ecc read from nand spare area with ECC registers values
  425 + * and if ECC's mismached, it will call 'omap_compare_ecc' for error detection
  426 + * and correction.
  427 + */
  428 +static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
  429 + u_char *read_ecc, u_char *calc_ecc)
  430 +{
  431 + struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
  432 + mtd);
  433 + int blockCnt = 0, i = 0, ret = 0;
  434 +
  435 + /* Ex NAND_ECC_HW12_2048 */
  436 + if ((info->nand.ecc.mode == NAND_ECC_HW) &&
  437 + (info->nand.ecc.size == 2048))
  438 + blockCnt = 4;
  439 + else
  440 + blockCnt = 1;
  441 +
  442 + for (i = 0; i < blockCnt; i++) {
  443 + if (memcmp(read_ecc, calc_ecc, 3) != 0) {
  444 + ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
  445 + if (ret < 0)
  446 + return ret;
  447 + }
  448 + read_ecc += 3;
  449 + calc_ecc += 3;
  450 + dat += 512;
  451 + }
  452 + return 0;
  453 +}
  454 +
  455 +/**
  456 + * omap_calcuate_ecc - Generate non-inverted ECC bytes.
  457 + * @mtd: MTD device structure
  458 + * @dat: The pointer to data on which ecc is computed
  459 + * @ecc_code: The ecc_code buffer
  460 + *
  461 + * Using noninverted ECC can be considered ugly since writing a blank
  462 + * page ie. padding will clear the ECC bytes. This is no problem as long
  463 + * nobody is trying to write data on the seemingly unused page. Reading
  464 + * an erased page will produce an ECC mismatch between generated and read
  465 + * ECC bytes that has to be dealt with separately.
  466 + */
  467 +static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
  468 + u_char *ecc_code)
  469 +{
  470 + struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
  471 + mtd);
  472 + unsigned long val = 0x0;
  473 + unsigned long reg;
  474 +
  475 + /* Start Reading from HW ECC1_Result = 0x200 */
  476 + reg = (unsigned long)(info->gpmc_baseaddr + GPMC_ECC1_RESULT);
  477 + val = __raw_readl(reg);
  478 + *ecc_code++ = val; /* P128e, ..., P1e */
  479 + *ecc_code++ = val >> 16; /* P128o, ..., P1o */
  480 + /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
  481 + *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
  482 + reg += 4;
  483 +
  484 + return 0;
  485 +}
  486 +
  487 +/**
  488 + * omap_enable_hwecc - This function enables the hardware ecc functionality
  489 + * @mtd: MTD device structure
  490 + * @mode: Read/Write mode
  491 + */
  492 +static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
  493 +{
  494 + struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
  495 + mtd);
  496 + struct nand_chip *chip = mtd->priv;
  497 + unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
  498 + unsigned long val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONFIG);
  499 +
  500 + switch (mode) {
  501 + case NAND_ECC_READ:
  502 + __raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
  503 + /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
  504 + val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
  505 + break;
  506 + case NAND_ECC_READSYN:
  507 + __raw_writel(0x100, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
  508 + /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
  509 + val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
  510 + break;
  511 + case NAND_ECC_WRITE:
  512 + __raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
  513 + /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
  514 + val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
  515 + break;
  516 + default:
  517 + DEBUG(MTD_DEBUG_LEVEL0, "Error: Unrecognized Mode[%d]!\n",
  518 + mode);
  519 + break;
  520 + }
  521 +
  522 + __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONFIG);
  523 +}
  524 +#endif
  525 +
  526 +/**
  527 + * omap_wait - wait until the command is done
  528 + * @mtd: MTD device structure
  529 + * @chip: NAND Chip structure
  530 + *
  531 + * Wait function is called during Program and erase operations and
  532 + * the way it is called from MTD layer, we should wait till the NAND
  533 + * chip is ready after the programming/erase operation has completed.
  534 + *
  535 + * Erase can take up to 400ms and program up to 20ms according to
  536 + * general NAND and SmartMedia specs
  537 + */
  538 +static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
  539 +{
  540 + struct nand_chip *this = mtd->priv;
  541 + struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
  542 + mtd);
  543 + unsigned long timeo = jiffies;
  544 + int status, state = this->state;
  545 +
  546 + if (state == FL_ERASING)
  547 + timeo += (HZ * 400) / 1000;
  548 + else
  549 + timeo += (HZ * 20) / 1000;
  550 +
  551 + this->IO_ADDR_W = (void *) info->gpmc_cs_baseaddr +
  552 + GPMC_CS_NAND_COMMAND;
  553 + this->IO_ADDR_R = (void *) info->gpmc_cs_baseaddr + GPMC_CS_NAND_DATA;
  554 +
  555 + __raw_writeb(NAND_CMD_STATUS & 0xFF, this->IO_ADDR_W);
  556 +
  557 + while (time_before(jiffies, timeo)) {
  558 + status = __raw_readb(this->IO_ADDR_R);
  559 + if (!(status & 0x40))
  560 + break;
  561 + }
  562 + return status;
  563 +}
  564 +
  565 +/**
  566 + * omap_dev_ready - calls the platform specific dev_ready function
  567 + * @mtd: MTD device structure
  568 + */
  569 +static int omap_dev_ready(struct mtd_info *mtd)
  570 +{
  571 + struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
  572 + mtd);
  573 + unsigned int val = __raw_readl(info->gpmc_baseaddr + GPMC_IRQ_STATUS);
  574 +
  575 + if ((val & 0x100) == 0x100) {
  576 + /* Clear IRQ Interrupt */
  577 + val |= 0x100;
  578 + val &= ~(0x0);
  579 + __raw_writel(val, info->gpmc_baseaddr + GPMC_IRQ_STATUS);
  580 + } else {
  581 + unsigned int cnt = 0;
  582 + while (cnt++ < 0x1FF) {
  583 + if ((val & 0x100) == 0x100)
  584 + return 0;
  585 + val = __raw_readl(info->gpmc_baseaddr +
  586 + GPMC_IRQ_STATUS);
  587 + }
  588 + }
  589 +
  590 + return 1;
  591 +}
  592 +
  593 +static int __devinit omap_nand_probe(struct platform_device *pdev)
  594 +{
  595 + struct omap_nand_info *info;
  596 + struct omap_nand_platform_data *pdata;
  597 + int err;
  598 + unsigned long val;
  599 +
  600 +
  601 + pdata = pdev->dev.platform_data;
  602 + if (pdata == NULL) {
  603 + dev_err(&pdev->dev, "platform data missing\n");
  604 + return -ENODEV;
  605 + }
  606 +
  607 + info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
  608 + if (!info)
  609 + return -ENOMEM;
  610 +
  611 + platform_set_drvdata(pdev, info);
  612 +
  613 + spin_lock_init(&info->controller.lock);
  614 + init_waitqueue_head(&info->controller.wq);
  615 +
  616 + info->pdev = pdev;
  617 +
  618 + info->gpmc_cs = pdata->cs;
  619 + info->gpmc_baseaddr = pdata->gpmc_baseaddr;
  620 + info->gpmc_cs_baseaddr = pdata->gpmc_cs_baseaddr;
  621 +
  622 + info->mtd.priv = &info->nand;
  623 + info->mtd.name = dev_name(&pdev->dev);
  624 + info->mtd.owner = THIS_MODULE;
  625 +
  626 + err = gpmc_cs_request(info->gpmc_cs, NAND_IO_SIZE, &info->phys_base);
  627 + if (err < 0) {
  628 + dev_err(&pdev->dev, "Cannot request GPMC CS\n");
  629 + goto out_free_info;
  630 + }
  631 +
  632 + /* Enable RD PIN Monitoring Reg */
  633 + if (pdata->dev_ready) {
  634 + val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1);
  635 + val |= WR_RD_PIN_MONITORING;
  636 + gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG1, val);
  637 + }
  638 +
  639 + val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG7);
  640 + val &= ~(0xf << 8);
  641 + val |= (0xc & 0xf) << 8;
  642 + gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG7, val);
  643 +
  644 + /* NAND write protect off */
  645 + omap_nand_wp(&info->mtd, NAND_WP_OFF);
  646 +
  647 + if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
  648 + pdev->dev.driver->name)) {
  649 + err = -EBUSY;
  650 + goto out_free_cs;
  651 + }
  652 +
  653 + info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
  654 + if (!info->nand.IO_ADDR_R) {
  655 + err = -ENOMEM;
  656 + goto out_release_mem_region;
  657 + }
  658 + info->nand.controller = &info->controller;
  659 +
  660 + info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
  661 + info->nand.cmd_ctrl = omap_hwcontrol;
  662 +
  663 + /* REVISIT: only supports 16-bit NAND flash */
  664 +
  665 + info->nand.read_buf = omap_read_buf16;
  666 + info->nand.write_buf = omap_write_buf16;
  667 + info->nand.verify_buf = omap_verify_buf;
  668 +
  669 + /*
  670 + * If RDY/BSY line is connected to OMAP then use the omap ready
  671 + * funcrtion and the generic nand_wait function which reads the status
  672 + * register after monitoring the RDY/BSY line.Otherwise use a standard
  673 + * chip delay which is slightly more than tR (AC Timing) of the NAND
  674 + * device and read status register until you get a failure or success
  675 + */
  676 + if (pdata->dev_ready) {
  677 + info->nand.dev_ready = omap_dev_ready;
  678 + info->nand.chip_delay = 0;
  679 + } else {
  680 + info->nand.waitfunc = omap_wait;
  681 + info->nand.chip_delay = 50;
  682 + }
  683 +
  684 + info->nand.options |= NAND_SKIP_BBTSCAN;
  685 + if ((gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1) & 0x3000)
  686 + == 0x1000)
  687 + info->nand.options |= NAND_BUSWIDTH_16;
  688 +
  689 +#ifdef CONFIG_MTD_NAND_OMAP_HWECC
  690 + info->nand.ecc.bytes = 3;
  691 + info->nand.ecc.size = 512;
  692 + info->nand.ecc.calculate = omap_calculate_ecc;
  693 + info->nand.ecc.hwctl = omap_enable_hwecc;
  694 + info->nand.ecc.correct = omap_correct_data;
  695 + info->nand.ecc.mode = NAND_ECC_HW;
  696 +
  697 + /* init HW ECC */
  698 + omap_hwecc_init(&info->mtd);
  699 +#else
  700 + info->nand.ecc.mode = NAND_ECC_SOFT;
  701 +#endif
  702 +
  703 + /* DIP switches on some boards change between 8 and 16 bit
  704 + * bus widths for flash. Try the other width if the first try fails.
  705 + */
  706 + if (nand_scan(&info->mtd, 1)) {
  707 + info->nand.options ^= NAND_BUSWIDTH_16;
  708 + if (nand_scan(&info->mtd, 1)) {
  709 + err = -ENXIO;
  710 + goto out_release_mem_region;
  711 + }
  712 + }
  713 +
  714 +#ifdef CONFIG_MTD_PARTITIONS
  715 + err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0);
  716 + if (err > 0)
  717 + add_mtd_partitions(&info->mtd, info->parts, err);
  718 + else if (pdata->parts)
  719 + add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts);
  720 + else
  721 +#endif
  722 + add_mtd_device(&info->mtd);
  723 +
  724 + platform_set_drvdata(pdev, &info->mtd);
  725 +
  726 + return 0;
  727 +
  728 +out_release_mem_region:
  729 + release_mem_region(info->phys_base, NAND_IO_SIZE);
  730 +out_free_cs:
  731 + gpmc_cs_free(info->gpmc_cs);
  732 +out_free_info:
  733 + kfree(info);
  734 +
  735 + return err;
  736 +}
  737 +
  738 +static int omap_nand_remove(struct platform_device *pdev)
  739 +{
  740 + struct mtd_info *mtd = platform_get_drvdata(pdev);
  741 + struct omap_nand_info *info = mtd->priv;
  742 +
  743 + platform_set_drvdata(pdev, NULL);
  744 + /* Release NAND device, its internal structures and partitions */
  745 + nand_release(&info->mtd);
  746 + iounmap(info->nand.IO_ADDR_R);
  747 + kfree(&info->mtd);
  748 + return 0;
  749 +}
  750 +
  751 +static struct platform_driver omap_nand_driver = {
  752 + .probe = omap_nand_probe,
  753 + .remove = omap_nand_remove,
  754 + .driver = {
  755 + .name = DRIVER_NAME,
  756 + .owner = THIS_MODULE,
  757 + },
  758 +};
  759 +
  760 +static int __init omap_nand_init(void)
  761 +{
  762 + printk(KERN_INFO "%s driver initializing\n", DRIVER_NAME);
  763 + return platform_driver_register(&omap_nand_driver);
  764 +}
  765 +
  766 +static void __exit omap_nand_exit(void)
  767 +{
  768 + platform_driver_unregister(&omap_nand_driver);
  769 +}
  770 +
  771 +module_init(omap_nand_init);
  772 +module_exit(omap_nand_exit);
  773 +
  774 +MODULE_ALIAS(DRIVER_NAME);
  775 +MODULE_LICENSE("GPL");
  776 +MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");