Commit 787dba37a6ff5c80c67f37c081712a6e4af92e25

Authored by Thomas Bogendoerfer
Committed by Jaroslav Kysela
1 parent 9e4641541e

ALSA: ALSA driver for SGI HAL2 audio device

This patch adds a new ALSA driver for the audio device found inside
many older SGI workstation (Indy, Indigo2). The hardware uses a SGI
custom chip, which feeds two codec chips, an IEC chip and a synth chip.
Currently only one of the codecs is supported. This driver already has
the same functionality as the HAL2 OSS driver and will replace it.

Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Jaroslav Kysela <perex@perex.cz>

Showing 4 changed files with 1201 additions and 0 deletions Side-by-side Diff

... ... @@ -9,6 +9,13 @@
9 9  
10 10 if SND_MIPS
11 11  
  12 +config SND_SGI_HAL2
  13 + tristate "SGI HAL2 Audio"
  14 + depends on SGI_HAS_HAL2
  15 + help
  16 + Sound support for the SGI Indy and Indigo2 Workstation.
  17 +
  18 +
12 19 config SND_AU1X00
13 20 tristate "Au1x00 AC97 Port Driver"
14 21 depends on SOC_AU1000 || SOC_AU1100 || SOC_AU1500
... ... @@ -3,7 +3,9 @@
3 3 #
4 4  
5 5 snd-au1x00-objs := au1x00.o
  6 +snd-sgi-hal2-objs := hal2.o
6 7  
7 8 # Toplevel Module Dependency
8 9 obj-$(CONFIG_SND_AU1X00) += snd-au1x00.o
  10 +obj-$(CONFIG_SND_SGI_HAL2) += snd-sgi-hal2.o
  1 +/*
  2 + * Driver for A2 audio system used in SGI machines
  3 + * Copyright (c) 2008 Thomas Bogendoerfer <tsbogend@alpha.fanken.de>
  4 + *
  5 + * Based on OSS code from Ladislav Michl <ladis@linux-mips.org>, which
  6 + * was based on code from Ulf Carlsson
  7 + *
  8 + * This program is free software; you can redistribute it and/or modify
  9 + * it under the terms of the GNU General Public License version 2 as
  10 + * published by the Free Software Foundation.
  11 + *
  12 + * This program is distributed in the hope that it will be useful,
  13 + * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15 + * GNU General Public License for more details.
  16 + *
  17 + * You should have received a copy of the GNU General Public License
  18 + * along with this program; if not, write to the Free Software
  19 + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20 + *
  21 + */
  22 +#include <linux/kernel.h>
  23 +#include <linux/init.h>
  24 +#include <linux/interrupt.h>
  25 +#include <linux/dma-mapping.h>
  26 +#include <linux/platform_device.h>
  27 +#include <linux/io.h>
  28 +
  29 +#include <asm/sgi/hpc3.h>
  30 +#include <asm/sgi/ip22.h>
  31 +
  32 +#include <sound/core.h>
  33 +#include <sound/control.h>
  34 +#include <sound/pcm.h>
  35 +#include <sound/pcm-indirect.h>
  36 +#include <sound/initval.h>
  37 +
  38 +#include "hal2.h"
  39 +
  40 +static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */
  41 +static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */
  42 +
  43 +module_param(index, int, 0444);
  44 +MODULE_PARM_DESC(index, "Index value for SGI HAL2 soundcard.");
  45 +module_param(id, charp, 0444);
  46 +MODULE_PARM_DESC(id, "ID string for SGI HAL2 soundcard.");
  47 +MODULE_DESCRIPTION("ALSA driver for SGI HAL2 audio");
  48 +MODULE_AUTHOR("Thomas Bogendoerfer");
  49 +MODULE_LICENSE("GPL");
  50 +
  51 +
  52 +#define H2_BLOCK_SIZE 1024
  53 +#define H2_BUF_SIZE 16384
  54 +
  55 +struct hal2_pbus {
  56 + struct hpc3_pbus_dmacregs *pbus;
  57 + int pbusnr;
  58 + unsigned int ctrl; /* Current state of pbus->pbdma_ctrl */
  59 +};
  60 +
  61 +struct hal2_desc {
  62 + struct hpc_dma_desc desc;
  63 + u32 pad; /* padding */
  64 +};
  65 +
  66 +struct hal2_codec {
  67 + struct snd_pcm_indirect pcm_indirect;
  68 + struct snd_pcm_substream *substream;
  69 +
  70 + unsigned char *buffer;
  71 + dma_addr_t buffer_dma;
  72 + struct hal2_desc *desc;
  73 + dma_addr_t desc_dma;
  74 + int desc_count;
  75 + struct hal2_pbus pbus;
  76 + int voices; /* mono/stereo */
  77 + unsigned int sample_rate;
  78 + unsigned int master; /* Master frequency */
  79 + unsigned short mod; /* MOD value */
  80 + unsigned short inc; /* INC value */
  81 +};
  82 +
  83 +#define H2_MIX_OUTPUT_ATT 0
  84 +#define H2_MIX_INPUT_GAIN 1
  85 +
  86 +struct snd_hal2 {
  87 + struct snd_card *card;
  88 +
  89 + struct hal2_ctl_regs *ctl_regs; /* HAL2 ctl registers */
  90 + struct hal2_aes_regs *aes_regs; /* HAL2 aes registers */
  91 + struct hal2_vol_regs *vol_regs; /* HAL2 vol registers */
  92 + struct hal2_syn_regs *syn_regs; /* HAL2 syn registers */
  93 +
  94 + struct hal2_codec dac;
  95 + struct hal2_codec adc;
  96 +};
  97 +
  98 +#define H2_INDIRECT_WAIT(regs) while (hal2_read(&regs->isr) & H2_ISR_TSTATUS);
  99 +
  100 +#define H2_READ_ADDR(addr) (addr | (1<<7))
  101 +#define H2_WRITE_ADDR(addr) (addr)
  102 +
  103 +static inline u32 hal2_read(u32 *reg)
  104 +{
  105 + return __raw_readl(reg);
  106 +}
  107 +
  108 +static inline void hal2_write(u32 val, u32 *reg)
  109 +{
  110 + __raw_writel(val, reg);
  111 +}
  112 +
  113 +
  114 +static u32 hal2_i_read32(struct snd_hal2 *hal2, u16 addr)
  115 +{
  116 + u32 ret;
  117 + struct hal2_ctl_regs *regs = hal2->ctl_regs;
  118 +
  119 + hal2_write(H2_READ_ADDR(addr), &regs->iar);
  120 + H2_INDIRECT_WAIT(regs);
  121 + ret = hal2_read(&regs->idr0) & 0xffff;
  122 + hal2_write(H2_READ_ADDR(addr) | 0x1, &regs->iar);
  123 + H2_INDIRECT_WAIT(regs);
  124 + ret |= (hal2_read(&regs->idr0) & 0xffff) << 16;
  125 + return ret;
  126 +}
  127 +
  128 +static void hal2_i_write16(struct snd_hal2 *hal2, u16 addr, u16 val)
  129 +{
  130 + struct hal2_ctl_regs *regs = hal2->ctl_regs;
  131 +
  132 + hal2_write(val, &regs->idr0);
  133 + hal2_write(0, &regs->idr1);
  134 + hal2_write(0, &regs->idr2);
  135 + hal2_write(0, &regs->idr3);
  136 + hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
  137 + H2_INDIRECT_WAIT(regs);
  138 +}
  139 +
  140 +static void hal2_i_write32(struct snd_hal2 *hal2, u16 addr, u32 val)
  141 +{
  142 + struct hal2_ctl_regs *regs = hal2->ctl_regs;
  143 +
  144 + hal2_write(val & 0xffff, &regs->idr0);
  145 + hal2_write(val >> 16, &regs->idr1);
  146 + hal2_write(0, &regs->idr2);
  147 + hal2_write(0, &regs->idr3);
  148 + hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
  149 + H2_INDIRECT_WAIT(regs);
  150 +}
  151 +
  152 +static void hal2_i_setbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
  153 +{
  154 + struct hal2_ctl_regs *regs = hal2->ctl_regs;
  155 +
  156 + hal2_write(H2_READ_ADDR(addr), &regs->iar);
  157 + H2_INDIRECT_WAIT(regs);
  158 + hal2_write((hal2_read(&regs->idr0) & 0xffff) | bit, &regs->idr0);
  159 + hal2_write(0, &regs->idr1);
  160 + hal2_write(0, &regs->idr2);
  161 + hal2_write(0, &regs->idr3);
  162 + hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
  163 + H2_INDIRECT_WAIT(regs);
  164 +}
  165 +
  166 +static void hal2_i_clearbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
  167 +{
  168 + struct hal2_ctl_regs *regs = hal2->ctl_regs;
  169 +
  170 + hal2_write(H2_READ_ADDR(addr), &regs->iar);
  171 + H2_INDIRECT_WAIT(regs);
  172 + hal2_write((hal2_read(&regs->idr0) & 0xffff) & ~bit, &regs->idr0);
  173 + hal2_write(0, &regs->idr1);
  174 + hal2_write(0, &regs->idr2);
  175 + hal2_write(0, &regs->idr3);
  176 + hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
  177 + H2_INDIRECT_WAIT(regs);
  178 +}
  179 +
  180 +static int hal2_gain_info(struct snd_kcontrol *kcontrol,
  181 + struct snd_ctl_elem_info *uinfo)
  182 +{
  183 + uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  184 + uinfo->count = 2;
  185 + uinfo->value.integer.min = 0;
  186 + switch ((int)kcontrol->private_value) {
  187 + case H2_MIX_OUTPUT_ATT:
  188 + uinfo->value.integer.max = 31;
  189 + break;
  190 + case H2_MIX_INPUT_GAIN:
  191 + uinfo->value.integer.max = 15;
  192 + break;
  193 + }
  194 + return 0;
  195 +}
  196 +
  197 +static int hal2_gain_get(struct snd_kcontrol *kcontrol,
  198 + struct snd_ctl_elem_value *ucontrol)
  199 +{
  200 + struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
  201 + u32 tmp;
  202 + int l, r;
  203 +
  204 + switch ((int)kcontrol->private_value) {
  205 + case H2_MIX_OUTPUT_ATT:
  206 + tmp = hal2_i_read32(hal2, H2I_DAC_C2);
  207 + if (tmp & H2I_C2_MUTE) {
  208 + l = 0;
  209 + r = 0;
  210 + } else {
  211 + l = 31 - ((tmp >> H2I_C2_L_ATT_SHIFT) & 31);
  212 + r = 31 - ((tmp >> H2I_C2_R_ATT_SHIFT) & 31);
  213 + }
  214 + break;
  215 + case H2_MIX_INPUT_GAIN:
  216 + tmp = hal2_i_read32(hal2, H2I_ADC_C2);
  217 + l = (tmp >> H2I_C2_L_GAIN_SHIFT) & 15;
  218 + r = (tmp >> H2I_C2_R_GAIN_SHIFT) & 15;
  219 + break;
  220 + }
  221 + ucontrol->value.integer.value[0] = l;
  222 + ucontrol->value.integer.value[1] = r;
  223 +
  224 + return 0;
  225 +}
  226 +
  227 +static int hal2_gain_put(struct snd_kcontrol *kcontrol,
  228 + struct snd_ctl_elem_value *ucontrol)
  229 +{
  230 + struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
  231 + u32 old, new;
  232 + int l, r;
  233 +
  234 + l = ucontrol->value.integer.value[0];
  235 + r = ucontrol->value.integer.value[1];
  236 +
  237 + switch ((int)kcontrol->private_value) {
  238 + case H2_MIX_OUTPUT_ATT:
  239 + old = hal2_i_read32(hal2, H2I_DAC_C2);
  240 + new = old & ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
  241 + if (l | r) {
  242 + l = 31 - l;
  243 + r = 31 - r;
  244 + new |= (l << H2I_C2_L_ATT_SHIFT);
  245 + new |= (r << H2I_C2_R_ATT_SHIFT);
  246 + } else
  247 + new |= H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE;
  248 + hal2_i_write32(hal2, H2I_DAC_C2, new);
  249 + break;
  250 + case H2_MIX_INPUT_GAIN:
  251 + old = hal2_i_read32(hal2, H2I_ADC_C2);
  252 + new = old & ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M);
  253 + new |= (l << H2I_C2_L_GAIN_SHIFT);
  254 + new |= (r << H2I_C2_R_GAIN_SHIFT);
  255 + hal2_i_write32(hal2, H2I_ADC_C2, new);
  256 + break;
  257 + }
  258 + return old != new;
  259 +}
  260 +
  261 +static struct snd_kcontrol_new hal2_ctrl_headphone __devinitdata = {
  262 + .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  263 + .name = "Headphone Playback Volume",
  264 + .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  265 + .private_value = H2_MIX_OUTPUT_ATT,
  266 + .info = hal2_gain_info,
  267 + .get = hal2_gain_get,
  268 + .put = hal2_gain_put,
  269 +};
  270 +
  271 +static struct snd_kcontrol_new hal2_ctrl_mic __devinitdata = {
  272 + .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  273 + .name = "Mic Capture Volume",
  274 + .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  275 + .private_value = H2_MIX_INPUT_GAIN,
  276 + .info = hal2_gain_info,
  277 + .get = hal2_gain_get,
  278 + .put = hal2_gain_put,
  279 +};
  280 +
  281 +static int __devinit hal2_mixer_create(struct snd_hal2 *hal2)
  282 +{
  283 + int err;
  284 +
  285 + /* mute DAC */
  286 + hal2_i_write32(hal2, H2I_DAC_C2,
  287 + H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
  288 + /* mute ADC */
  289 + hal2_i_write32(hal2, H2I_ADC_C2, 0);
  290 +
  291 + err = snd_ctl_add(hal2->card,
  292 + snd_ctl_new1(&hal2_ctrl_headphone, hal2));
  293 + if (err < 0)
  294 + return err;
  295 +
  296 + err = snd_ctl_add(hal2->card,
  297 + snd_ctl_new1(&hal2_ctrl_mic, hal2));
  298 + if (err < 0)
  299 + return err;
  300 +
  301 + return 0;
  302 +}
  303 +
  304 +static irqreturn_t hal2_interrupt(int irq, void *dev_id)
  305 +{
  306 + struct snd_hal2 *hal2 = dev_id;
  307 + irqreturn_t ret = IRQ_NONE;
  308 +
  309 + /* decide what caused this interrupt */
  310 + if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
  311 + snd_pcm_period_elapsed(hal2->dac.substream);
  312 + ret = IRQ_HANDLED;
  313 + }
  314 + if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
  315 + snd_pcm_period_elapsed(hal2->adc.substream);
  316 + ret = IRQ_HANDLED;
  317 + }
  318 + return ret;
  319 +}
  320 +
  321 +static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate)
  322 +{
  323 + unsigned short mod;
  324 +
  325 + if (44100 % rate < 48000 % rate) {
  326 + mod = 4 * 44100 / rate;
  327 + codec->master = 44100;
  328 + } else {
  329 + mod = 4 * 48000 / rate;
  330 + codec->master = 48000;
  331 + }
  332 +
  333 + codec->inc = 4;
  334 + codec->mod = mod;
  335 + rate = 4 * codec->master / mod;
  336 +
  337 + return rate;
  338 +}
  339 +
  340 +static void hal2_set_dac_rate(struct snd_hal2 *hal2)
  341 +{
  342 + unsigned int master = hal2->dac.master;
  343 + int inc = hal2->dac.inc;
  344 + int mod = hal2->dac.mod;
  345 +
  346 + hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0);
  347 + hal2_i_write32(hal2, H2I_BRES1_C2,
  348 + ((0xffff & (inc - mod - 1)) << 16) | inc);
  349 +}
  350 +
  351 +static void hal2_set_adc_rate(struct snd_hal2 *hal2)
  352 +{
  353 + unsigned int master = hal2->adc.master;
  354 + int inc = hal2->adc.inc;
  355 + int mod = hal2->adc.mod;
  356 +
  357 + hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0);
  358 + hal2_i_write32(hal2, H2I_BRES2_C2,
  359 + ((0xffff & (inc - mod - 1)) << 16) | inc);
  360 +}
  361 +
  362 +static void hal2_setup_dac(struct snd_hal2 *hal2)
  363 +{
  364 + unsigned int fifobeg, fifoend, highwater, sample_size;
  365 + struct hal2_pbus *pbus = &hal2->dac.pbus;
  366 +
  367 + /* Now we set up some PBUS information. The PBUS needs information about
  368 + * what portion of the fifo it will use. If it's receiving or
  369 + * transmitting, and finally whether the stream is little endian or big
  370 + * endian. The information is written later, on the start call.
  371 + */
  372 + sample_size = 2 * hal2->dac.voices;
  373 + /* Fifo should be set to hold exactly four samples. Highwater mark
  374 + * should be set to two samples. */
  375 + highwater = (sample_size * 2) >> 1; /* halfwords */
  376 + fifobeg = 0; /* playback is first */
  377 + fifoend = (sample_size * 4) >> 3; /* doublewords */
  378 + pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD |
  379 + (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
  380 + /* We disable everything before we do anything at all */
  381 + pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
  382 + hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
  383 + /* Setup the HAL2 for playback */
  384 + hal2_set_dac_rate(hal2);
  385 + /* Set endianess */
  386 + hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
  387 + /* Set DMA bus */
  388 + hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
  389 + /* We are using 1st Bresenham clock generator for playback */
  390 + hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
  391 + | (1 << H2I_C1_CLKID_SHIFT)
  392 + | (hal2->dac.voices << H2I_C1_DATAT_SHIFT));
  393 +}
  394 +
  395 +static void hal2_setup_adc(struct snd_hal2 *hal2)
  396 +{
  397 + unsigned int fifobeg, fifoend, highwater, sample_size;
  398 + struct hal2_pbus *pbus = &hal2->adc.pbus;
  399 +
  400 + sample_size = 2 * hal2->adc.voices;
  401 + highwater = (sample_size * 2) >> 1; /* halfwords */
  402 + fifobeg = (4 * 4) >> 3; /* record is second */
  403 + fifoend = (4 * 4 + sample_size * 4) >> 3; /* doublewords */
  404 + pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD |
  405 + (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
  406 + pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
  407 + hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
  408 + /* Setup the HAL2 for record */
  409 + hal2_set_adc_rate(hal2);
  410 + /* Set endianess */
  411 + hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
  412 + /* Set DMA bus */
  413 + hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
  414 + /* We are using 2nd Bresenham clock generator for record */
  415 + hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
  416 + | (2 << H2I_C1_CLKID_SHIFT)
  417 + | (hal2->adc.voices << H2I_C1_DATAT_SHIFT));
  418 +}
  419 +
  420 +static void hal2_start_dac(struct snd_hal2 *hal2)
  421 +{
  422 + struct hal2_pbus *pbus = &hal2->dac.pbus;
  423 +
  424 + pbus->pbus->pbdma_dptr = hal2->dac.desc_dma;
  425 + pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
  426 + /* enable DAC */
  427 + hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
  428 +}
  429 +
  430 +static void hal2_start_adc(struct snd_hal2 *hal2)
  431 +{
  432 + struct hal2_pbus *pbus = &hal2->adc.pbus;
  433 +
  434 + pbus->pbus->pbdma_dptr = hal2->adc.desc_dma;
  435 + pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
  436 + /* enable ADC */
  437 + hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
  438 +}
  439 +
  440 +static inline void hal2_stop_dac(struct snd_hal2 *hal2)
  441 +{
  442 + hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
  443 + /* The HAL2 itself may remain enabled safely */
  444 +}
  445 +
  446 +static inline void hal2_stop_adc(struct snd_hal2 *hal2)
  447 +{
  448 + hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
  449 +}
  450 +
  451 +static int hal2_alloc_dmabuf(struct hal2_codec *codec)
  452 +{
  453 + struct hal2_desc *desc;
  454 + dma_addr_t desc_dma, buffer_dma;
  455 + int count = H2_BUF_SIZE / H2_BLOCK_SIZE;
  456 + int i;
  457 +
  458 + codec->buffer = dma_alloc_noncoherent(NULL, H2_BUF_SIZE,
  459 + &buffer_dma, GFP_KERNEL);
  460 + if (!codec->buffer)
  461 + return -ENOMEM;
  462 + desc = dma_alloc_noncoherent(NULL, count * sizeof(struct hal2_desc),
  463 + &desc_dma, GFP_KERNEL);
  464 + if (!desc) {
  465 + dma_free_noncoherent(NULL, H2_BUF_SIZE,
  466 + codec->buffer, buffer_dma);
  467 + return -ENOMEM;
  468 + }
  469 + codec->buffer_dma = buffer_dma;
  470 + codec->desc_dma = desc_dma;
  471 + codec->desc = desc;
  472 + for (i = 0; i < count; i++) {
  473 + desc->desc.pbuf = buffer_dma + i * H2_BLOCK_SIZE;
  474 + desc->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE;
  475 + desc->desc.pnext = (i == count - 1) ?
  476 + desc_dma : desc_dma + (i + 1) * sizeof(struct hal2_desc);
  477 + desc++;
  478 + }
  479 + dma_cache_sync(NULL, codec->desc, count * sizeof(struct hal2_desc),
  480 + DMA_TO_DEVICE);
  481 + codec->desc_count = count;
  482 + return 0;
  483 +}
  484 +
  485 +static void hal2_free_dmabuf(struct hal2_codec *codec)
  486 +{
  487 + dma_free_noncoherent(NULL, codec->desc_count * sizeof(struct hal2_desc),
  488 + codec->desc, codec->desc_dma);
  489 + dma_free_noncoherent(NULL, H2_BUF_SIZE, codec->buffer,
  490 + codec->buffer_dma);
  491 +}
  492 +
  493 +static struct snd_pcm_hardware hal2_pcm_hw = {
  494 + .info = (SNDRV_PCM_INFO_MMAP |
  495 + SNDRV_PCM_INFO_MMAP_VALID |
  496 + SNDRV_PCM_INFO_INTERLEAVED |
  497 + SNDRV_PCM_INFO_BLOCK_TRANSFER),
  498 + .formats = SNDRV_PCM_FMTBIT_S16_BE,
  499 + .rates = SNDRV_PCM_RATE_8000_48000,
  500 + .rate_min = 8000,
  501 + .rate_max = 48000,
  502 + .channels_min = 2,
  503 + .channels_max = 2,
  504 + .buffer_bytes_max = 65536,
  505 + .period_bytes_min = 1024,
  506 + .period_bytes_max = 65536,
  507 + .periods_min = 2,
  508 + .periods_max = 1024,
  509 +};
  510 +
  511 +static int hal2_pcm_hw_params(struct snd_pcm_substream *substream,
  512 + struct snd_pcm_hw_params *params)
  513 +{
  514 + int err;
  515 +
  516 + err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
  517 + if (err < 0)
  518 + return err;
  519 +
  520 + return 0;
  521 +}
  522 +
  523 +static int hal2_pcm_hw_free(struct snd_pcm_substream *substream)
  524 +{
  525 + return snd_pcm_lib_free_pages(substream);
  526 +}
  527 +
  528 +static int hal2_playback_open(struct snd_pcm_substream *substream)
  529 +{
  530 + struct snd_pcm_runtime *runtime = substream->runtime;
  531 + struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  532 + int err;
  533 +
  534 + runtime->hw = hal2_pcm_hw;
  535 +
  536 + err = hal2_alloc_dmabuf(&hal2->dac);
  537 + if (err)
  538 + return err;
  539 + return 0;
  540 +}
  541 +
  542 +static int hal2_playback_close(struct snd_pcm_substream *substream)
  543 +{
  544 + struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  545 +
  546 + hal2_free_dmabuf(&hal2->dac);
  547 + return 0;
  548 +}
  549 +
  550 +static int hal2_playback_prepare(struct snd_pcm_substream *substream)
  551 +{
  552 + struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  553 + struct snd_pcm_runtime *runtime = substream->runtime;
  554 + struct hal2_codec *dac = &hal2->dac;
  555 +
  556 + dac->voices = runtime->channels;
  557 + dac->sample_rate = hal2_compute_rate(dac, runtime->rate);
  558 + memset(&dac->pcm_indirect, 0, sizeof(dac->pcm_indirect));
  559 + dac->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
  560 + dac->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
  561 + dac->substream = substream;
  562 + hal2_setup_dac(hal2);
  563 + return 0;
  564 +}
  565 +
  566 +static int hal2_playback_trigger(struct snd_pcm_substream *substream, int cmd)
  567 +{
  568 + struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  569 +
  570 + switch (cmd) {
  571 + case SNDRV_PCM_TRIGGER_START:
  572 + hal2->dac.pcm_indirect.hw_io = hal2->dac.buffer_dma;
  573 + hal2->dac.pcm_indirect.hw_data = 0;
  574 + substream->ops->ack(substream);
  575 + hal2_start_dac(hal2);
  576 + break;
  577 + case SNDRV_PCM_TRIGGER_STOP:
  578 + hal2_stop_dac(hal2);
  579 + break;
  580 + default:
  581 + return -EINVAL;
  582 + }
  583 + return 0;
  584 +}
  585 +
  586 +static snd_pcm_uframes_t
  587 +hal2_playback_pointer(struct snd_pcm_substream *substream)
  588 +{
  589 + struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  590 + struct hal2_codec *dac = &hal2->dac;
  591 +
  592 + return snd_pcm_indirect_playback_pointer(substream, &dac->pcm_indirect,
  593 + dac->pbus.pbus->pbdma_bptr);
  594 +}
  595 +
  596 +static void hal2_playback_transfer(struct snd_pcm_substream *substream,
  597 + struct snd_pcm_indirect *rec, size_t bytes)
  598 +{
  599 + struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  600 + unsigned char *buf = hal2->dac.buffer + rec->hw_data;
  601 +
  602 + memcpy(buf, substream->runtime->dma_area + rec->sw_data, bytes);
  603 + dma_cache_sync(NULL, buf, bytes, DMA_TO_DEVICE);
  604 +
  605 +}
  606 +
  607 +static int hal2_playback_ack(struct snd_pcm_substream *substream)
  608 +{
  609 + struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  610 + struct hal2_codec *dac = &hal2->dac;
  611 +
  612 + dac->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
  613 + snd_pcm_indirect_playback_transfer(substream,
  614 + &dac->pcm_indirect,
  615 + hal2_playback_transfer);
  616 + return 0;
  617 +}
  618 +
  619 +static int hal2_capture_open(struct snd_pcm_substream *substream)
  620 +{
  621 + struct snd_pcm_runtime *runtime = substream->runtime;
  622 + struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  623 + struct hal2_codec *adc = &hal2->adc;
  624 + int err;
  625 +
  626 + runtime->hw = hal2_pcm_hw;
  627 +
  628 + err = hal2_alloc_dmabuf(adc);
  629 + if (err)
  630 + return err;
  631 + return 0;
  632 +}
  633 +
  634 +static int hal2_capture_close(struct snd_pcm_substream *substream)
  635 +{
  636 + struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  637 +
  638 + hal2_free_dmabuf(&hal2->adc);
  639 + return 0;
  640 +}
  641 +
  642 +static int hal2_capture_prepare(struct snd_pcm_substream *substream)
  643 +{
  644 + struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  645 + struct snd_pcm_runtime *runtime = substream->runtime;
  646 + struct hal2_codec *adc = &hal2->adc;
  647 +
  648 + adc->voices = runtime->channels;
  649 + adc->sample_rate = hal2_compute_rate(adc, runtime->rate);
  650 + memset(&adc->pcm_indirect, 0, sizeof(adc->pcm_indirect));
  651 + adc->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
  652 + adc->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
  653 + adc->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
  654 + adc->substream = substream;
  655 + hal2_setup_adc(hal2);
  656 + return 0;
  657 +}
  658 +
  659 +static int hal2_capture_trigger(struct snd_pcm_substream *substream, int cmd)
  660 +{
  661 + struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  662 +
  663 + switch (cmd) {
  664 + case SNDRV_PCM_TRIGGER_START:
  665 + hal2->adc.pcm_indirect.hw_io = hal2->adc.buffer_dma;
  666 + hal2->adc.pcm_indirect.hw_data = 0;
  667 + printk(KERN_DEBUG "buffer_dma %x\n", hal2->adc.buffer_dma);
  668 + hal2_start_adc(hal2);
  669 + break;
  670 + case SNDRV_PCM_TRIGGER_STOP:
  671 + hal2_stop_adc(hal2);
  672 + break;
  673 + default:
  674 + return -EINVAL;
  675 + }
  676 + return 0;
  677 +}
  678 +
  679 +static snd_pcm_uframes_t
  680 +hal2_capture_pointer(struct snd_pcm_substream *substream)
  681 +{
  682 + struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  683 + struct hal2_codec *adc = &hal2->adc;
  684 +
  685 + return snd_pcm_indirect_capture_pointer(substream, &adc->pcm_indirect,
  686 + adc->pbus.pbus->pbdma_bptr);
  687 +}
  688 +
  689 +static void hal2_capture_transfer(struct snd_pcm_substream *substream,
  690 + struct snd_pcm_indirect *rec, size_t bytes)
  691 +{
  692 + struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  693 + unsigned char *buf = hal2->adc.buffer + rec->hw_data;
  694 +
  695 + dma_cache_sync(NULL, buf, bytes, DMA_FROM_DEVICE);
  696 + memcpy(substream->runtime->dma_area + rec->sw_data, buf, bytes);
  697 +}
  698 +
  699 +static int hal2_capture_ack(struct snd_pcm_substream *substream)
  700 +{
  701 + struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  702 + struct hal2_codec *adc = &hal2->adc;
  703 +
  704 + snd_pcm_indirect_capture_transfer(substream,
  705 + &adc->pcm_indirect,
  706 + hal2_capture_transfer);
  707 + return 0;
  708 +}
  709 +
  710 +static struct snd_pcm_ops hal2_playback_ops = {
  711 + .open = hal2_playback_open,
  712 + .close = hal2_playback_close,
  713 + .ioctl = snd_pcm_lib_ioctl,
  714 + .hw_params = hal2_pcm_hw_params,
  715 + .hw_free = hal2_pcm_hw_free,
  716 + .prepare = hal2_playback_prepare,
  717 + .trigger = hal2_playback_trigger,
  718 + .pointer = hal2_playback_pointer,
  719 + .ack = hal2_playback_ack,
  720 +};
  721 +
  722 +static struct snd_pcm_ops hal2_capture_ops = {
  723 + .open = hal2_capture_open,
  724 + .close = hal2_capture_close,
  725 + .ioctl = snd_pcm_lib_ioctl,
  726 + .hw_params = hal2_pcm_hw_params,
  727 + .hw_free = hal2_pcm_hw_free,
  728 + .prepare = hal2_capture_prepare,
  729 + .trigger = hal2_capture_trigger,
  730 + .pointer = hal2_capture_pointer,
  731 + .ack = hal2_capture_ack,
  732 +};
  733 +
  734 +static int __devinit hal2_pcm_create(struct snd_hal2 *hal2)
  735 +{
  736 + struct snd_pcm *pcm;
  737 + int err;
  738 +
  739 + /* create first pcm device with one outputs and one input */
  740 + err = snd_pcm_new(hal2->card, "SGI HAL2 Audio", 0, 1, 1, &pcm);
  741 + if (err < 0)
  742 + return err;
  743 +
  744 + pcm->private_data = hal2;
  745 + strcpy(pcm->name, "SGI HAL2");
  746 +
  747 + /* set operators */
  748 + snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
  749 + &hal2_playback_ops);
  750 + snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
  751 + &hal2_capture_ops);
  752 + snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
  753 + snd_dma_continuous_data(GFP_KERNEL),
  754 + 0, 1024 * 1024);
  755 +
  756 + return 0;
  757 +}
  758 +
  759 +static int hal2_dev_free(struct snd_device *device)
  760 +{
  761 + struct snd_hal2 *hal2 = device->device_data;
  762 +
  763 + free_irq(SGI_HPCDMA_IRQ, hal2);
  764 + kfree(hal2);
  765 + return 0;
  766 +}
  767 +
  768 +static struct snd_device_ops hal2_ops = {
  769 + .dev_free = hal2_dev_free,
  770 +};
  771 +
  772 +static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3,
  773 + int index)
  774 +{
  775 + codec->pbus.pbusnr = index;
  776 + codec->pbus.pbus = &hpc3->pbdma[index];
  777 +}
  778 +
  779 +static int hal2_detect(struct snd_hal2 *hal2)
  780 +{
  781 + unsigned short board, major, minor;
  782 + unsigned short rev;
  783 +
  784 + /* reset HAL2 */
  785 + hal2_write(0, &hal2->ctl_regs->isr);
  786 +
  787 + /* release reset */
  788 + hal2_write(H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N,
  789 + &hal2->ctl_regs->isr);
  790 +
  791 +
  792 + hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE);
  793 + rev = hal2_read(&hal2->ctl_regs->rev);
  794 + if (rev & H2_REV_AUDIO_PRESENT)
  795 + return -ENODEV;
  796 +
  797 + board = (rev & H2_REV_BOARD_M) >> 12;
  798 + major = (rev & H2_REV_MAJOR_CHIP_M) >> 4;
  799 + minor = (rev & H2_REV_MINOR_CHIP_M);
  800 +
  801 + printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n",
  802 + board, major, minor);
  803 +
  804 + return 0;
  805 +}
  806 +
  807 +static int hal2_create(struct snd_card *card, struct snd_hal2 **rchip)
  808 +{
  809 + struct snd_hal2 *hal2;
  810 + struct hpc3_regs *hpc3 = hpc3c0;
  811 + int err;
  812 +
  813 + hal2 = kzalloc(sizeof(struct snd_hal2), GFP_KERNEL);
  814 + if (!hal2)
  815 + return -ENOMEM;
  816 +
  817 + hal2->card = card;
  818 +
  819 + if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED,
  820 + "SGI HAL2", hal2)) {
  821 + printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ);
  822 + kfree(hal2);
  823 + return -EAGAIN;
  824 + }
  825 +
  826 + hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0];
  827 + hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1];
  828 + hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2];
  829 + hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3];
  830 +
  831 + if (hal2_detect(hal2) < 0) {
  832 + kfree(hal2);
  833 + return -ENODEV;
  834 + }
  835 +
  836 + hal2_init_codec(&hal2->dac, hpc3, 0);
  837 + hal2_init_codec(&hal2->adc, hpc3, 1);
  838 +
  839 + /*
  840 + * All DMA channel interfaces in HAL2 are designed to operate with
  841 + * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles
  842 + * in D5. HAL2 is a 16-bit device which can accept both big and little
  843 + * endian format. It assumes that even address bytes are on high
  844 + * portion of PBUS (15:8) and assumes that HPC3 is programmed to
  845 + * accept a live (unsynchronized) version of P_DREQ_N from HAL2.
  846 + */
  847 +#define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \
  848 + (2 << HPC3_DMACFG_D4R_SHIFT) | \
  849 + (2 << HPC3_DMACFG_D5R_SHIFT) | \
  850 + (0 << HPC3_DMACFG_D3W_SHIFT) | \
  851 + (2 << HPC3_DMACFG_D4W_SHIFT) | \
  852 + (2 << HPC3_DMACFG_D5W_SHIFT) | \
  853 + HPC3_DMACFG_DS16 | \
  854 + HPC3_DMACFG_EVENHI | \
  855 + HPC3_DMACFG_RTIME | \
  856 + (8 << HPC3_DMACFG_BURST_SHIFT) | \
  857 + HPC3_DMACFG_DRQLIVE)
  858 + /*
  859 + * Ignore what's mentioned in the specification and write value which
  860 + * works in The Real World (TM)
  861 + */
  862 + hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844;
  863 + hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844;
  864 +
  865 + err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, hal2, &hal2_ops);
  866 + if (err < 0) {
  867 + free_irq(SGI_HPCDMA_IRQ, hal2);
  868 + kfree(hal2);
  869 + return err;
  870 + }
  871 + *rchip = hal2;
  872 + return 0;
  873 +}
  874 +
  875 +static int __devinit hal2_probe(struct platform_device *pdev)
  876 +{
  877 + struct snd_card *card;
  878 + struct snd_hal2 *chip;
  879 + int err;
  880 +
  881 + card = snd_card_new(index, id, THIS_MODULE, 0);
  882 + if (card == NULL)
  883 + return -ENOMEM;
  884 +
  885 + err = hal2_create(card, &chip);
  886 + if (err < 0) {
  887 + snd_card_free(card);
  888 + return err;
  889 + }
  890 + snd_card_set_dev(card, &pdev->dev);
  891 +
  892 + err = hal2_pcm_create(chip);
  893 + if (err < 0) {
  894 + snd_card_free(card);
  895 + return err;
  896 + }
  897 + err = hal2_mixer_create(chip);
  898 + if (err < 0) {
  899 + snd_card_free(card);
  900 + return err;
  901 + }
  902 +
  903 + strcpy(card->driver, "SGI HAL2 Audio");
  904 + strcpy(card->shortname, "SGI HAL2 Audio");
  905 + sprintf(card->longname, "%s irq %i",
  906 + card->shortname,
  907 + SGI_HPCDMA_IRQ);
  908 +
  909 + err = snd_card_register(card);
  910 + if (err < 0) {
  911 + snd_card_free(card);
  912 + return err;
  913 + }
  914 + platform_set_drvdata(pdev, card);
  915 + return 0;
  916 +}
  917 +
  918 +static int __exit hal2_remove(struct platform_device *pdev)
  919 +{
  920 + struct snd_card *card = platform_get_drvdata(pdev);
  921 +
  922 + snd_card_free(card);
  923 + platform_set_drvdata(pdev, NULL);
  924 + return 0;
  925 +}
  926 +
  927 +static struct platform_driver hal2_driver = {
  928 + .probe = hal2_probe,
  929 + .remove = __devexit_p(hal2_remove),
  930 + .driver = {
  931 + .name = "sgihal2",
  932 + .owner = THIS_MODULE,
  933 + }
  934 +};
  935 +
  936 +static int __init alsa_card_hal2_init(void)
  937 +{
  938 + return platform_driver_register(&hal2_driver);
  939 +}
  940 +
  941 +static void __exit alsa_card_hal2_exit(void)
  942 +{
  943 + platform_driver_unregister(&hal2_driver);
  944 +}
  945 +
  946 +module_init(alsa_card_hal2_init);
  947 +module_exit(alsa_card_hal2_exit);
  1 +#ifndef __HAL2_H
  2 +#define __HAL2_H
  3 +
  4 +/*
  5 + * Driver for HAL2 sound processors
  6 + * Copyright (c) 1999 Ulf Carlsson <ulfc@bun.falkenberg.se>
  7 + * Copyright (c) 2001, 2002, 2003 Ladislav Michl <ladis@linux-mips.org>
  8 + *
  9 + * This program is free software; you can redistribute it and/or modify
  10 + * it under the terms of the GNU General Public License version 2 as
  11 + * published by the Free Software Foundation.
  12 + *
  13 + * This program is distributed in the hope that it will be useful,
  14 + * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16 + * GNU General Public License for more details.
  17 + *
  18 + * You should have received a copy of the GNU General Public License
  19 + * along with this program; if not, write to the Free Software
  20 + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 + *
  22 + */
  23 +
  24 +#include <linux/types.h>
  25 +
  26 +/* Indirect status register */
  27 +
  28 +#define H2_ISR_TSTATUS 0x01 /* RO: transaction status 1=busy */
  29 +#define H2_ISR_USTATUS 0x02 /* RO: utime status bit 1=armed */
  30 +#define H2_ISR_QUAD_MODE 0x04 /* codec mode 0=indigo 1=quad */
  31 +#define H2_ISR_GLOBAL_RESET_N 0x08 /* chip global reset 0=reset */
  32 +#define H2_ISR_CODEC_RESET_N 0x10 /* codec/synth reset 0=reset */
  33 +
  34 +/* Revision register */
  35 +
  36 +#define H2_REV_AUDIO_PRESENT 0x8000 /* RO: audio present 0=present */
  37 +#define H2_REV_BOARD_M 0x7000 /* RO: bits 14:12, board revision */
  38 +#define H2_REV_MAJOR_CHIP_M 0x00F0 /* RO: bits 7:4, major chip revision */
  39 +#define H2_REV_MINOR_CHIP_M 0x000F /* RO: bits 3:0, minor chip revision */
  40 +
  41 +/* Indirect address register */
  42 +
  43 +/*
  44 + * Address of indirect internal register to be accessed. A write to this
  45 + * register initiates read or write access to the indirect registers in the
  46 + * HAL2. Note that there af four indirect data registers for write access to
  47 + * registers larger than 16 byte.
  48 + */
  49 +
  50 +#define H2_IAR_TYPE_M 0xF000 /* bits 15:12, type of functional */
  51 + /* block the register resides in */
  52 + /* 1=DMA Port */
  53 + /* 9=Global DMA Control */
  54 + /* 2=Bresenham */
  55 + /* 3=Unix Timer */
  56 +#define H2_IAR_NUM_M 0x0F00 /* bits 11:8 instance of the */
  57 + /* blockin which the indirect */
  58 + /* register resides */
  59 + /* If IAR_TYPE_M=DMA Port: */
  60 + /* 1=Synth In */
  61 + /* 2=AES In */
  62 + /* 3=AES Out */
  63 + /* 4=DAC Out */
  64 + /* 5=ADC Out */
  65 + /* 6=Synth Control */
  66 + /* If IAR_TYPE_M=Global DMA Control: */
  67 + /* 1=Control */
  68 + /* If IAR_TYPE_M=Bresenham: */
  69 + /* 1=Bresenham Clock Gen 1 */
  70 + /* 2=Bresenham Clock Gen 2 */
  71 + /* 3=Bresenham Clock Gen 3 */
  72 + /* If IAR_TYPE_M=Unix Timer: */
  73 + /* 1=Unix Timer */
  74 +#define H2_IAR_ACCESS_SELECT 0x0080 /* 1=read 0=write */
  75 +#define H2_IAR_PARAM 0x000C /* Parameter Select */
  76 +#define H2_IAR_RB_INDEX_M 0x0003 /* Read Back Index */
  77 + /* 00:word0 */
  78 + /* 01:word1 */
  79 + /* 10:word2 */
  80 + /* 11:word3 */
  81 +/*
  82 + * HAL2 internal addressing
  83 + *
  84 + * The HAL2 has "indirect registers" (idr) which are accessed by writing to the
  85 + * Indirect Data registers. Write the address to the Indirect Address register
  86 + * to transfer the data.
  87 + *
  88 + * We define the H2IR_* to the read address and H2IW_* to the write address and
  89 + * H2I_* to be fields in whatever register is referred to.
  90 + *
  91 + * When we write to indirect registers which are larger than one word (16 bit)
  92 + * we have to fill more than one indirect register before writing. When we read
  93 + * back however we have to read several times, each time with different Read
  94 + * Back Indexes (there are defs for doing this easily).
  95 + */
  96 +
  97 +/*
  98 + * Relay Control
  99 + */
  100 +#define H2I_RELAY_C 0x9100
  101 +#define H2I_RELAY_C_STATE 0x01 /* state of RELAY pin signal */
  102 +
  103 +/* DMA port enable */
  104 +
  105 +#define H2I_DMA_PORT_EN 0x9104
  106 +#define H2I_DMA_PORT_EN_SY_IN 0x01 /* Synth_in DMA port */
  107 +#define H2I_DMA_PORT_EN_AESRX 0x02 /* AES receiver DMA port */
  108 +#define H2I_DMA_PORT_EN_AESTX 0x04 /* AES transmitter DMA port */
  109 +#define H2I_DMA_PORT_EN_CODECTX 0x08 /* CODEC transmit DMA port */
  110 +#define H2I_DMA_PORT_EN_CODECR 0x10 /* CODEC receive DMA port */
  111 +
  112 +#define H2I_DMA_END 0x9108 /* global dma endian select */
  113 +#define H2I_DMA_END_SY_IN 0x01 /* Synth_in DMA port */
  114 +#define H2I_DMA_END_AESRX 0x02 /* AES receiver DMA port */
  115 +#define H2I_DMA_END_AESTX 0x04 /* AES transmitter DMA port */
  116 +#define H2I_DMA_END_CODECTX 0x08 /* CODEC transmit DMA port */
  117 +#define H2I_DMA_END_CODECR 0x10 /* CODEC receive DMA port */
  118 + /* 0=b_end 1=l_end */
  119 +
  120 +#define H2I_DMA_DRV 0x910C /* global PBUS DMA enable */
  121 +
  122 +#define H2I_SYNTH_C 0x1104 /* Synth DMA control */
  123 +
  124 +#define H2I_AESRX_C 0x1204 /* AES RX dma control */
  125 +
  126 +#define H2I_C_TS_EN 0x20 /* Timestamp enable */
  127 +#define H2I_C_TS_FRMT 0x40 /* Timestamp format */
  128 +#define H2I_C_NAUDIO 0x80 /* Sign extend */
  129 +
  130 +/* AESRX CTL, 16 bit */
  131 +
  132 +#define H2I_AESTX_C 0x1304 /* AES TX DMA control */
  133 +#define H2I_AESTX_C_CLKID_SHIFT 3 /* Bresenham Clock Gen 1-3 */
  134 +#define H2I_AESTX_C_CLKID_M 0x18
  135 +#define H2I_AESTX_C_DATAT_SHIFT 8 /* 1=mono 2=stereo (3=quad) */
  136 +#define H2I_AESTX_C_DATAT_M 0x300
  137 +
  138 +/* CODEC registers */
  139 +
  140 +#define H2I_DAC_C1 0x1404 /* DAC DMA control, 16 bit */
  141 +#define H2I_DAC_C2 0x1408 /* DAC DMA control, 32 bit */
  142 +#define H2I_ADC_C1 0x1504 /* ADC DMA control, 16 bit */
  143 +#define H2I_ADC_C2 0x1508 /* ADC DMA control, 32 bit */
  144 +
  145 +/* Bits in CTL1 register */
  146 +
  147 +#define H2I_C1_DMA_SHIFT 0 /* DMA channel */
  148 +#define H2I_C1_DMA_M 0x7
  149 +#define H2I_C1_CLKID_SHIFT 3 /* Bresenham Clock Gen 1-3 */
  150 +#define H2I_C1_CLKID_M 0x18
  151 +#define H2I_C1_DATAT_SHIFT 8 /* 1=mono 2=stereo (3=quad) */
  152 +#define H2I_C1_DATAT_M 0x300
  153 +
  154 +/* Bits in CTL2 register */
  155 +
  156 +#define H2I_C2_R_GAIN_SHIFT 0 /* right a/d input gain */
  157 +#define H2I_C2_R_GAIN_M 0xf
  158 +#define H2I_C2_L_GAIN_SHIFT 4 /* left a/d input gain */
  159 +#define H2I_C2_L_GAIN_M 0xf0
  160 +#define H2I_C2_R_SEL 0x100 /* right input select */
  161 +#define H2I_C2_L_SEL 0x200 /* left input select */
  162 +#define H2I_C2_MUTE 0x400 /* mute */
  163 +#define H2I_C2_DO1 0x00010000 /* digital output port bit 0 */
  164 +#define H2I_C2_DO2 0x00020000 /* digital output port bit 1 */
  165 +#define H2I_C2_R_ATT_SHIFT 18 /* right d/a output - */
  166 +#define H2I_C2_R_ATT_M 0x007c0000 /* attenuation */
  167 +#define H2I_C2_L_ATT_SHIFT 23 /* left d/a output - */
  168 +#define H2I_C2_L_ATT_M 0x0f800000 /* attenuation */
  169 +
  170 +#define H2I_SYNTH_MAP_C 0x1104 /* synth dma handshake ctrl */
  171 +
  172 +/* Clock generator CTL 1, 16 bit */
  173 +
  174 +#define H2I_BRES1_C1 0x2104
  175 +#define H2I_BRES2_C1 0x2204
  176 +#define H2I_BRES3_C1 0x2304
  177 +
  178 +#define H2I_BRES_C1_SHIFT 0 /* 0=48.0 1=44.1 2=aes_rx */
  179 +#define H2I_BRES_C1_M 0x03
  180 +
  181 +/* Clock generator CTL 2, 32 bit */
  182 +
  183 +#define H2I_BRES1_C2 0x2108
  184 +#define H2I_BRES2_C2 0x2208
  185 +#define H2I_BRES3_C2 0x2308
  186 +
  187 +#define H2I_BRES_C2_INC_SHIFT 0 /* increment value */
  188 +#define H2I_BRES_C2_INC_M 0xffff
  189 +#define H2I_BRES_C2_MOD_SHIFT 16 /* modcontrol value */
  190 +#define H2I_BRES_C2_MOD_M 0xffff0000 /* modctrl=0xffff&(modinc-1) */
  191 +
  192 +/* Unix timer, 64 bit */
  193 +
  194 +#define H2I_UTIME 0x3104
  195 +#define H2I_UTIME_0_LD 0xffff /* microseconds, LSB's */
  196 +#define H2I_UTIME_1_LD0 0x0f /* microseconds, MSB's */
  197 +#define H2I_UTIME_1_LD1 0xf0 /* tenths of microseconds */
  198 +#define H2I_UTIME_2_LD 0xffff /* seconds, LSB's */
  199 +#define H2I_UTIME_3_LD 0xffff /* seconds, MSB's */
  200 +
  201 +struct hal2_ctl_regs {
  202 + u32 _unused0[4];
  203 + u32 isr; /* 0x10 Status Register */
  204 + u32 _unused1[3];
  205 + u32 rev; /* 0x20 Revision Register */
  206 + u32 _unused2[3];
  207 + u32 iar; /* 0x30 Indirect Address Register */
  208 + u32 _unused3[3];
  209 + u32 idr0; /* 0x40 Indirect Data Register 0 */
  210 + u32 _unused4[3];
  211 + u32 idr1; /* 0x50 Indirect Data Register 1 */
  212 + u32 _unused5[3];
  213 + u32 idr2; /* 0x60 Indirect Data Register 2 */
  214 + u32 _unused6[3];
  215 + u32 idr3; /* 0x70 Indirect Data Register 3 */
  216 +};
  217 +
  218 +struct hal2_aes_regs {
  219 + u32 rx_stat[2]; /* Status registers */
  220 + u32 rx_cr[2]; /* Control registers */
  221 + u32 rx_ud[4]; /* User data window */
  222 + u32 rx_st[24]; /* Channel status data */
  223 +
  224 + u32 tx_stat[1]; /* Status register */
  225 + u32 tx_cr[3]; /* Control registers */
  226 + u32 tx_ud[4]; /* User data window */
  227 + u32 tx_st[24]; /* Channel status data */
  228 +};
  229 +
  230 +struct hal2_vol_regs {
  231 + u32 right; /* Right volume */
  232 + u32 left; /* Left volume */
  233 +};
  234 +
  235 +struct hal2_syn_regs {
  236 + u32 _unused0[2];
  237 + u32 page; /* DOC Page register */
  238 + u32 regsel; /* DOC Register selection */
  239 + u32 dlow; /* DOC Data low */
  240 + u32 dhigh; /* DOC Data high */
  241 + u32 irq; /* IRQ Status */
  242 + u32 dram; /* DRAM Access */
  243 +};
  244 +
  245 +#endif /* __HAL2_H */