spi-sh-msiof.c 38.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
// SPDX-License-Identifier: GPL-2.0
/*
 * SuperH MSIOF SPI Controller Interface
 *
 * Copyright (c) 2009 Magnus Damm
 * Copyright (C) 2014 Renesas Electronics Corporation
 * Copyright (C) 2014-2017 Glider bvba
 */

#include <linux/bitmap.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/sh_dma.h>

#include <linux/spi/sh_msiof.h>
#include <linux/spi/spi.h>

#include <asm/unaligned.h>

struct sh_msiof_chipdata {
	u32 bits_per_word_mask;
	u16 tx_fifo_size;
	u16 rx_fifo_size;
	u16 ctlr_flags;
	u16 min_div_pow;
};

struct sh_msiof_spi_priv {
	struct spi_controller *ctlr;
	void __iomem *mapbase;
	struct clk *clk;
	struct platform_device *pdev;
	struct sh_msiof_spi_info *info;
	struct completion done;
	struct completion done_txdma;
	unsigned int tx_fifo_size;
	unsigned int rx_fifo_size;
	unsigned int min_div_pow;
	void *tx_dma_page;
	void *rx_dma_page;
	dma_addr_t tx_dma_addr;
	dma_addr_t rx_dma_addr;
	bool native_cs_inited;
	bool native_cs_high;
	bool slave_aborted;
};

#define MAX_SS	3	/* Maximum number of native chip selects */

#define SITMDR1	0x00	/* Transmit Mode Register 1 */
#define SITMDR2	0x04	/* Transmit Mode Register 2 */
#define SITMDR3	0x08	/* Transmit Mode Register 3 */
#define SIRMDR1	0x10	/* Receive Mode Register 1 */
#define SIRMDR2	0x14	/* Receive Mode Register 2 */
#define SIRMDR3	0x18	/* Receive Mode Register 3 */
#define SITSCR	0x20	/* Transmit Clock Select Register */
#define SIRSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
#define SICTR	0x28	/* Control Register */
#define SIFCTR	0x30	/* FIFO Control Register */
#define SISTR	0x40	/* Status Register */
#define SIIER	0x44	/* Interrupt Enable Register */
#define SITDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
#define SITDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
#define SITFDR	0x50	/* Transmit FIFO Data Register */
#define SIRDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
#define SIRDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
#define SIRFDR	0x60	/* Receive FIFO Data Register */

/* SITMDR1 and SIRMDR1 */
#define SIMDR1_TRMD		BIT(31)		/* Transfer Mode (1 = Master mode) */
#define SIMDR1_SYNCMD_MASK	GENMASK(29, 28)	/* SYNC Mode */
#define SIMDR1_SYNCMD_SPI	(2 << 28)	/*   Level mode/SPI */
#define SIMDR1_SYNCMD_LR	(3 << 28)	/*   L/R mode */
#define SIMDR1_SYNCAC_SHIFT	25		/* Sync Polarity (1 = Active-low) */
#define SIMDR1_BITLSB_SHIFT	24		/* MSB/LSB First (1 = LSB first) */
#define SIMDR1_DTDL_SHIFT	20		/* Data Pin Bit Delay for MSIOF_SYNC */
#define SIMDR1_SYNCDL_SHIFT	16		/* Frame Sync Signal Timing Delay */
#define SIMDR1_FLD_MASK		GENMASK(3, 2)	/* Frame Sync Signal Interval (0-3) */
#define SIMDR1_FLD_SHIFT	2
#define SIMDR1_XXSTP		BIT(0)		/* Transmission/Reception Stop on FIFO */
/* SITMDR1 */
#define SITMDR1_PCON		BIT(30)		/* Transfer Signal Connection */
#define SITMDR1_SYNCCH_MASK	GENMASK(27, 26)	/* Sync Signal Channel Select */
#define SITMDR1_SYNCCH_SHIFT	26		/* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */

/* SITMDR2 and SIRMDR2 */
#define SIMDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
#define SIMDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
#define SIMDR2_GRPMASK1		BIT(0)		/* Group Output Mask 1 (SH, A1) */

/* SITSCR and SIRSCR */
#define SISCR_BRPS_MASK		GENMASK(12, 8)	/* Prescaler Setting (1-32) */
#define SISCR_BRPS(i)		(((i) - 1) << 8)
#define SISCR_BRDV_MASK		GENMASK(2, 0)	/* Baud Rate Generator's Division Ratio */
#define SISCR_BRDV_DIV_2	0
#define SISCR_BRDV_DIV_4	1
#define SISCR_BRDV_DIV_8	2
#define SISCR_BRDV_DIV_16	3
#define SISCR_BRDV_DIV_32	4
#define SISCR_BRDV_DIV_1	7

/* SICTR */
#define SICTR_TSCKIZ_MASK	GENMASK(31, 30)	/* Transmit Clock I/O Polarity Select */
#define SICTR_TSCKIZ_SCK	BIT(31)		/*   Disable SCK when TX disabled */
#define SICTR_TSCKIZ_POL_SHIFT	30		/*   Transmit Clock Polarity */
#define SICTR_RSCKIZ_MASK	GENMASK(29, 28) /* Receive Clock Polarity Select */
#define SICTR_RSCKIZ_SCK	BIT(29)		/*   Must match CTR_TSCKIZ_SCK */
#define SICTR_RSCKIZ_POL_SHIFT	28		/*   Receive Clock Polarity */
#define SICTR_TEDG_SHIFT	27		/* Transmit Timing (1 = falling edge) */
#define SICTR_REDG_SHIFT	26		/* Receive Timing (1 = falling edge) */
#define SICTR_TXDIZ_MASK	GENMASK(23, 22)	/* Pin Output When TX is Disabled */
#define SICTR_TXDIZ_LOW		(0 << 22)	/*   0 */
#define SICTR_TXDIZ_HIGH	(1 << 22)	/*   1 */
#define SICTR_TXDIZ_HIZ		(2 << 22)	/*   High-impedance */
#define SICTR_TSCKE		BIT(15)		/* Transmit Serial Clock Output Enable */
#define SICTR_TFSE		BIT(14)		/* Transmit Frame Sync Signal Output Enable */
#define SICTR_TXE		BIT(9)		/* Transmit Enable */
#define SICTR_RXE		BIT(8)		/* Receive Enable */
#define SICTR_TXRST		BIT(1)		/* Transmit Reset */
#define SICTR_RXRST		BIT(0)		/* Receive Reset */

/* SIFCTR */
#define SIFCTR_TFWM_MASK	GENMASK(31, 29)	/* Transmit FIFO Watermark */
#define SIFCTR_TFWM_64		(0 << 29)	/*  Transfer Request when 64 empty stages */
#define SIFCTR_TFWM_32		(1 << 29)	/*  Transfer Request when 32 empty stages */
#define SIFCTR_TFWM_24		(2 << 29)	/*  Transfer Request when 24 empty stages */
#define SIFCTR_TFWM_16		(3 << 29)	/*  Transfer Request when 16 empty stages */
#define SIFCTR_TFWM_12		(4 << 29)	/*  Transfer Request when 12 empty stages */
#define SIFCTR_TFWM_8		(5 << 29)	/*  Transfer Request when 8 empty stages */
#define SIFCTR_TFWM_4		(6 << 29)	/*  Transfer Request when 4 empty stages */
#define SIFCTR_TFWM_1		(7 << 29)	/*  Transfer Request when 1 empty stage */
#define SIFCTR_TFUA_MASK	GENMASK(26, 20) /* Transmit FIFO Usable Area */
#define SIFCTR_TFUA_SHIFT	20
#define SIFCTR_TFUA(i)		((i) << SIFCTR_TFUA_SHIFT)
#define SIFCTR_RFWM_MASK	GENMASK(15, 13)	/* Receive FIFO Watermark */
#define SIFCTR_RFWM_1		(0 << 13)	/*  Transfer Request when 1 valid stages */
#define SIFCTR_RFWM_4		(1 << 13)	/*  Transfer Request when 4 valid stages */
#define SIFCTR_RFWM_8		(2 << 13)	/*  Transfer Request when 8 valid stages */
#define SIFCTR_RFWM_16		(3 << 13)	/*  Transfer Request when 16 valid stages */
#define SIFCTR_RFWM_32		(4 << 13)	/*  Transfer Request when 32 valid stages */
#define SIFCTR_RFWM_64		(5 << 13)	/*  Transfer Request when 64 valid stages */
#define SIFCTR_RFWM_128		(6 << 13)	/*  Transfer Request when 128 valid stages */
#define SIFCTR_RFWM_256		(7 << 13)	/*  Transfer Request when 256 valid stages */
#define SIFCTR_RFUA_MASK	GENMASK(12, 4)	/* Receive FIFO Usable Area (0x40 = full) */
#define SIFCTR_RFUA_SHIFT	4
#define SIFCTR_RFUA(i)		((i) << SIFCTR_RFUA_SHIFT)

/* SISTR */
#define SISTR_TFEMP		BIT(29) /* Transmit FIFO Empty */
#define SISTR_TDREQ		BIT(28) /* Transmit Data Transfer Request */
#define SISTR_TEOF		BIT(23) /* Frame Transmission End */
#define SISTR_TFSERR		BIT(21) /* Transmit Frame Synchronization Error */
#define SISTR_TFOVF		BIT(20) /* Transmit FIFO Overflow */
#define SISTR_TFUDF		BIT(19) /* Transmit FIFO Underflow */
#define SISTR_RFFUL		BIT(13) /* Receive FIFO Full */
#define SISTR_RDREQ		BIT(12) /* Receive Data Transfer Request */
#define SISTR_REOF		BIT(7)  /* Frame Reception End */
#define SISTR_RFSERR		BIT(5)  /* Receive Frame Synchronization Error */
#define SISTR_RFUDF		BIT(4)  /* Receive FIFO Underflow */
#define SISTR_RFOVF		BIT(3)  /* Receive FIFO Overflow */

/* SIIER */
#define SIIER_TDMAE		BIT(31) /* Transmit Data DMA Transfer Req. Enable */
#define SIIER_TFEMPE		BIT(29) /* Transmit FIFO Empty Enable */
#define SIIER_TDREQE		BIT(28) /* Transmit Data Transfer Request Enable */
#define SIIER_TEOFE		BIT(23) /* Frame Transmission End Enable */
#define SIIER_TFSERRE		BIT(21) /* Transmit Frame Sync Error Enable */
#define SIIER_TFOVFE		BIT(20) /* Transmit FIFO Overflow Enable */
#define SIIER_TFUDFE		BIT(19) /* Transmit FIFO Underflow Enable */
#define SIIER_RDMAE		BIT(15) /* Receive Data DMA Transfer Req. Enable */
#define SIIER_RFFULE		BIT(13) /* Receive FIFO Full Enable */
#define SIIER_RDREQE		BIT(12) /* Receive Data Transfer Request Enable */
#define SIIER_REOFE		BIT(7)  /* Frame Reception End Enable */
#define SIIER_RFSERRE		BIT(5)  /* Receive Frame Sync Error Enable */
#define SIIER_RFUDFE		BIT(4)  /* Receive FIFO Underflow Enable */
#define SIIER_RFOVFE		BIT(3)  /* Receive FIFO Overflow Enable */


static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
{
	switch (reg_offs) {
	case SITSCR:
	case SIRSCR:
		return ioread16(p->mapbase + reg_offs);
	default:
		return ioread32(p->mapbase + reg_offs);
	}
}

static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
			   u32 value)
{
	switch (reg_offs) {
	case SITSCR:
	case SIRSCR:
		iowrite16(value, p->mapbase + reg_offs);
		break;
	default:
		iowrite32(value, p->mapbase + reg_offs);
		break;
	}
}

static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
				    u32 clr, u32 set)
{
	u32 mask = clr | set;
	u32 data;

	data = sh_msiof_read(p, SICTR);
	data &= ~clr;
	data |= set;
	sh_msiof_write(p, SICTR, data);

	return readl_poll_timeout_atomic(p->mapbase + SICTR, data,
					 (data & mask) == set, 1, 100);
}

static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
{
	struct sh_msiof_spi_priv *p = data;

	/* just disable the interrupt and wake up */
	sh_msiof_write(p, SIIER, 0);
	complete(&p->done);

	return IRQ_HANDLED;
}

static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p)
{
	u32 mask = SICTR_TXRST | SICTR_RXRST;
	u32 data;

	data = sh_msiof_read(p, SICTR);
	data |= mask;
	sh_msiof_write(p, SICTR, data);

	readl_poll_timeout_atomic(p->mapbase + SICTR, data, !(data & mask), 1,
				  100);
}

static const u32 sh_msiof_spi_div_array[] = {
	SISCR_BRDV_DIV_1, SISCR_BRDV_DIV_2, SISCR_BRDV_DIV_4,
	SISCR_BRDV_DIV_8, SISCR_BRDV_DIV_16, SISCR_BRDV_DIV_32,
};

static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
				      unsigned long parent_rate, u32 spi_hz)
{
	unsigned long div;
	u32 brps, scr;
	unsigned int div_pow = p->min_div_pow;

	if (!spi_hz || !parent_rate) {
		WARN(1, "Invalid clock rate parameters %lu and %u\n",
		     parent_rate, spi_hz);
		return;
	}

	div = DIV_ROUND_UP(parent_rate, spi_hz);
	if (div <= 1024) {
		/* SISCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
		if (!div_pow && div <= 32 && div > 2)
			div_pow = 1;

		if (div_pow)
			brps = (div + 1) >> div_pow;
		else
			brps = div;

		for (; brps > 32; div_pow++)
			brps = (brps + 1) >> 1;
	} else {
		/* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
		dev_err(&p->pdev->dev,
			"Requested SPI transfer rate %d is too low\n", spi_hz);
		div_pow = 5;
		brps = 32;
	}

	scr = sh_msiof_spi_div_array[div_pow] | SISCR_BRPS(brps);
	sh_msiof_write(p, SITSCR, scr);
	if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
		sh_msiof_write(p, SIRSCR, scr);
}

static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
{
	/*
	 * DTDL/SYNCDL bit	: p->info->dtdl or p->info->syncdl
	 * b'000		: 0
	 * b'001		: 100
	 * b'010		: 200
	 * b'011 (SYNCDL only)	: 300
	 * b'101		: 50
	 * b'110		: 150
	 */
	if (dtdl_or_syncdl % 100)
		return dtdl_or_syncdl / 100 + 5;
	else
		return dtdl_or_syncdl / 100;
}

static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
{
	u32 val;

	if (!p->info)
		return 0;

	/* check if DTDL and SYNCDL is allowed value */
	if (p->info->dtdl > 200 || p->info->syncdl > 300) {
		dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
		return 0;
	}

	/* check if the sum of DTDL and SYNCDL becomes an integer value  */
	if ((p->info->dtdl + p->info->syncdl) % 100) {
		dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
		return 0;
	}

	val = sh_msiof_get_delay_bit(p->info->dtdl) << SIMDR1_DTDL_SHIFT;
	val |= sh_msiof_get_delay_bit(p->info->syncdl) << SIMDR1_SYNCDL_SHIFT;

	return val;
}

static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
				      u32 cpol, u32 cpha,
				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
{
	u32 tmp;
	int edge;

	/*
	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
	 *    0    0         10     10    1    1
	 *    0    1         10     10    0    0
	 *    1    0         11     11    0    0
	 *    1    1         11     11    1    1
	 */
	tmp = SIMDR1_SYNCMD_SPI | 1 << SIMDR1_FLD_SHIFT | SIMDR1_XXSTP;
	tmp |= !cs_high << SIMDR1_SYNCAC_SHIFT;
	tmp |= lsb_first << SIMDR1_BITLSB_SHIFT;
	tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
	if (spi_controller_is_slave(p->ctlr)) {
		sh_msiof_write(p, SITMDR1, tmp | SITMDR1_PCON);
	} else {
		sh_msiof_write(p, SITMDR1,
			       tmp | SIMDR1_TRMD | SITMDR1_PCON |
			       (ss < MAX_SS ? ss : 0) << SITMDR1_SYNCCH_SHIFT);
	}
	if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) {
		/* These bits are reserved if RX needs TX */
		tmp &= ~0x0000ffff;
	}
	sh_msiof_write(p, SIRMDR1, tmp);

	tmp = 0;
	tmp |= SICTR_TSCKIZ_SCK | cpol << SICTR_TSCKIZ_POL_SHIFT;
	tmp |= SICTR_RSCKIZ_SCK | cpol << SICTR_RSCKIZ_POL_SHIFT;

	edge = cpol ^ !cpha;

	tmp |= edge << SICTR_TEDG_SHIFT;
	tmp |= edge << SICTR_REDG_SHIFT;
	tmp |= tx_hi_z ? SICTR_TXDIZ_HIZ : SICTR_TXDIZ_LOW;
	sh_msiof_write(p, SICTR, tmp);
}

static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
				       const void *tx_buf, void *rx_buf,
				       u32 bits, u32 words)
{
	u32 dr2 = SIMDR2_BITLEN1(bits) | SIMDR2_WDLEN1(words);

	if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
		sh_msiof_write(p, SITMDR2, dr2);
	else
		sh_msiof_write(p, SITMDR2, dr2 | SIMDR2_GRPMASK1);

	if (rx_buf)
		sh_msiof_write(p, SIRMDR2, dr2);
}

static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
{
	sh_msiof_write(p, SISTR,
		       sh_msiof_read(p, SISTR) & ~(SISTR_TDREQ | SISTR_RDREQ));
}

static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
				      const void *tx_buf, int words, int fs)
{
	const u8 *buf_8 = tx_buf;
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, SITFDR, buf_8[k] << fs);
}

static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
				       const void *tx_buf, int words, int fs)
{
	const u16 *buf_16 = tx_buf;
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, SITFDR, buf_16[k] << fs);
}

static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
					const void *tx_buf, int words, int fs)
{
	const u16 *buf_16 = tx_buf;
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, SITFDR, get_unaligned(&buf_16[k]) << fs);
}

static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
				       const void *tx_buf, int words, int fs)
{
	const u32 *buf_32 = tx_buf;
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, SITFDR, buf_32[k] << fs);
}

static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
					const void *tx_buf, int words, int fs)
{
	const u32 *buf_32 = tx_buf;
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, SITFDR, get_unaligned(&buf_32[k]) << fs);
}

static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
					const void *tx_buf, int words, int fs)
{
	const u32 *buf_32 = tx_buf;
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, SITFDR, swab32(buf_32[k] << fs));
}

static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
					 const void *tx_buf, int words, int fs)
{
	const u32 *buf_32 = tx_buf;
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, SITFDR, swab32(get_unaligned(&buf_32[k]) << fs));
}

static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
				     void *rx_buf, int words, int fs)
{
	u8 *buf_8 = rx_buf;
	int k;

	for (k = 0; k < words; k++)
		buf_8[k] = sh_msiof_read(p, SIRFDR) >> fs;
}

static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
				      void *rx_buf, int words, int fs)
{
	u16 *buf_16 = rx_buf;
	int k;

	for (k = 0; k < words; k++)
		buf_16[k] = sh_msiof_read(p, SIRFDR) >> fs;
}

static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
				       void *rx_buf, int words, int fs)
{
	u16 *buf_16 = rx_buf;
	int k;

	for (k = 0; k < words; k++)
		put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_16[k]);
}

static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
				      void *rx_buf, int words, int fs)
{
	u32 *buf_32 = rx_buf;
	int k;

	for (k = 0; k < words; k++)
		buf_32[k] = sh_msiof_read(p, SIRFDR) >> fs;
}

static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
				       void *rx_buf, int words, int fs)
{
	u32 *buf_32 = rx_buf;
	int k;

	for (k = 0; k < words; k++)
		put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_32[k]);
}

static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
				       void *rx_buf, int words, int fs)
{
	u32 *buf_32 = rx_buf;
	int k;

	for (k = 0; k < words; k++)
		buf_32[k] = swab32(sh_msiof_read(p, SIRFDR) >> fs);
}

static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
				       void *rx_buf, int words, int fs)
{
	u32 *buf_32 = rx_buf;
	int k;

	for (k = 0; k < words; k++)
		put_unaligned(swab32(sh_msiof_read(p, SIRFDR) >> fs), &buf_32[k]);
}

static int sh_msiof_spi_setup(struct spi_device *spi)
{
	struct sh_msiof_spi_priv *p =
		spi_controller_get_devdata(spi->controller);
	u32 clr, set, tmp;

	if (spi->cs_gpiod || spi_controller_is_slave(p->ctlr))
		return 0;

	if (p->native_cs_inited &&
	    (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
		return 0;

	/* Configure native chip select mode/polarity early */
	clr = SIMDR1_SYNCMD_MASK;
	set = SIMDR1_SYNCMD_SPI;
	if (spi->mode & SPI_CS_HIGH)
		clr |= BIT(SIMDR1_SYNCAC_SHIFT);
	else
		set |= BIT(SIMDR1_SYNCAC_SHIFT);
	pm_runtime_get_sync(&p->pdev->dev);
	tmp = sh_msiof_read(p, SITMDR1) & ~clr;
	sh_msiof_write(p, SITMDR1, tmp | set | SIMDR1_TRMD | SITMDR1_PCON);
	tmp = sh_msiof_read(p, SIRMDR1) & ~clr;
	sh_msiof_write(p, SIRMDR1, tmp | set);
	pm_runtime_put(&p->pdev->dev);
	p->native_cs_high = spi->mode & SPI_CS_HIGH;
	p->native_cs_inited = true;
	return 0;
}

static int sh_msiof_prepare_message(struct spi_controller *ctlr,
				    struct spi_message *msg)
{
	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
	const struct spi_device *spi = msg->spi;
	u32 ss, cs_high;

	/* Configure pins before asserting CS */
	if (spi->cs_gpiod) {
		ss = ctlr->unused_native_cs;
		cs_high = p->native_cs_high;
	} else {
		ss = spi->chip_select;
		cs_high = !!(spi->mode & SPI_CS_HIGH);
	}
	sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
				  !!(spi->mode & SPI_CPHA),
				  !!(spi->mode & SPI_3WIRE),
				  !!(spi->mode & SPI_LSB_FIRST), cs_high);
	return 0;
}

static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
{
	bool slave = spi_controller_is_slave(p->ctlr);
	int ret = 0;

	/* setup clock and rx/tx signals */
	if (!slave)
		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TSCKE);
	if (rx_buf && !ret)
		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_RXE);
	if (!ret)
		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TXE);

	/* start by setting frame bit */
	if (!ret && !slave)
		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TFSE);

	return ret;
}

static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
{
	bool slave = spi_controller_is_slave(p->ctlr);
	int ret = 0;

	/* shut down frame, rx/tx and clock signals */
	if (!slave)
		ret = sh_msiof_modify_ctr_wait(p, SICTR_TFSE, 0);
	if (!ret)
		ret = sh_msiof_modify_ctr_wait(p, SICTR_TXE, 0);
	if (rx_buf && !ret)
		ret = sh_msiof_modify_ctr_wait(p, SICTR_RXE, 0);
	if (!ret && !slave)
		ret = sh_msiof_modify_ctr_wait(p, SICTR_TSCKE, 0);

	return ret;
}

static int sh_msiof_slave_abort(struct spi_controller *ctlr)
{
	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);

	p->slave_aborted = true;
	complete(&p->done);
	complete(&p->done_txdma);
	return 0;
}

static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
					struct completion *x)
{
	if (spi_controller_is_slave(p->ctlr)) {
		if (wait_for_completion_interruptible(x) ||
		    p->slave_aborted) {
			dev_dbg(&p->pdev->dev, "interrupted\n");
			return -EINTR;
		}
	} else {
		if (!wait_for_completion_timeout(x, HZ)) {
			dev_err(&p->pdev->dev, "timeout\n");
			return -ETIMEDOUT;
		}
	}

	return 0;
}

static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
						  const void *, int, int),
				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
						  void *, int, int),
				  const void *tx_buf, void *rx_buf,
				  int words, int bits)
{
	int fifo_shift;
	int ret;

	/* limit maximum word transfer to rx/tx fifo size */
	if (tx_buf)
		words = min_t(int, words, p->tx_fifo_size);
	if (rx_buf)
		words = min_t(int, words, p->rx_fifo_size);

	/* the fifo contents need shifting */
	fifo_shift = 32 - bits;

	/* default FIFO watermarks for PIO */
	sh_msiof_write(p, SIFCTR, 0);

	/* setup msiof transfer mode registers */
	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
	sh_msiof_write(p, SIIER, SIIER_TEOFE | SIIER_REOFE);

	/* write tx fifo */
	if (tx_buf)
		tx_fifo(p, tx_buf, words, fifo_shift);

	reinit_completion(&p->done);
	p->slave_aborted = false;

	ret = sh_msiof_spi_start(p, rx_buf);
	if (ret) {
		dev_err(&p->pdev->dev, "failed to start hardware\n");
		goto stop_ier;
	}

	/* wait for tx fifo to be emptied / rx fifo to be filled */
	ret = sh_msiof_wait_for_completion(p, &p->done);
	if (ret)
		goto stop_reset;

	/* read rx fifo */
	if (rx_buf)
		rx_fifo(p, rx_buf, words, fifo_shift);

	/* clear status bits */
	sh_msiof_reset_str(p);

	ret = sh_msiof_spi_stop(p, rx_buf);
	if (ret) {
		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
		return ret;
	}

	return words;

stop_reset:
	sh_msiof_reset_str(p);
	sh_msiof_spi_stop(p, rx_buf);
stop_ier:
	sh_msiof_write(p, SIIER, 0);
	return ret;
}

static void sh_msiof_dma_complete(void *arg)
{
	complete(arg);
}

static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
			     void *rx, unsigned int len)
{
	u32 ier_bits = 0;
	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
	dma_cookie_t cookie;
	int ret;

	/* First prepare and submit the DMA request(s), as this may fail */
	if (rx) {
		ier_bits |= SIIER_RDREQE | SIIER_RDMAE;
		desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx,
					p->rx_dma_addr, len, DMA_DEV_TO_MEM,
					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
		if (!desc_rx)
			return -EAGAIN;

		desc_rx->callback = sh_msiof_dma_complete;
		desc_rx->callback_param = &p->done;
		cookie = dmaengine_submit(desc_rx);
		if (dma_submit_error(cookie))
			return cookie;
	}

	if (tx) {
		ier_bits |= SIIER_TDREQE | SIIER_TDMAE;
		dma_sync_single_for_device(p->ctlr->dma_tx->device->dev,
					   p->tx_dma_addr, len, DMA_TO_DEVICE);
		desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx,
					p->tx_dma_addr, len, DMA_MEM_TO_DEV,
					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
		if (!desc_tx) {
			ret = -EAGAIN;
			goto no_dma_tx;
		}

		desc_tx->callback = sh_msiof_dma_complete;
		desc_tx->callback_param = &p->done_txdma;
		cookie = dmaengine_submit(desc_tx);
		if (dma_submit_error(cookie)) {
			ret = cookie;
			goto no_dma_tx;
		}
	}

	/* 1 stage FIFO watermarks for DMA */
	sh_msiof_write(p, SIFCTR, SIFCTR_TFWM_1 | SIFCTR_RFWM_1);

	/* setup msiof transfer mode registers (32-bit words) */
	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);

	sh_msiof_write(p, SIIER, ier_bits);

	reinit_completion(&p->done);
	if (tx)
		reinit_completion(&p->done_txdma);
	p->slave_aborted = false;

	/* Now start DMA */
	if (rx)
		dma_async_issue_pending(p->ctlr->dma_rx);
	if (tx)
		dma_async_issue_pending(p->ctlr->dma_tx);

	ret = sh_msiof_spi_start(p, rx);
	if (ret) {
		dev_err(&p->pdev->dev, "failed to start hardware\n");
		goto stop_dma;
	}

	if (tx) {
		/* wait for tx DMA completion */
		ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
		if (ret)
			goto stop_reset;
	}

	if (rx) {
		/* wait for rx DMA completion */
		ret = sh_msiof_wait_for_completion(p, &p->done);
		if (ret)
			goto stop_reset;

		sh_msiof_write(p, SIIER, 0);
	} else {
		/* wait for tx fifo to be emptied */
		sh_msiof_write(p, SIIER, SIIER_TEOFE);
		ret = sh_msiof_wait_for_completion(p, &p->done);
		if (ret)
			goto stop_reset;
	}

	/* clear status bits */
	sh_msiof_reset_str(p);

	ret = sh_msiof_spi_stop(p, rx);
	if (ret) {
		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
		return ret;
	}

	if (rx)
		dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev,
					p->rx_dma_addr, len, DMA_FROM_DEVICE);

	return 0;

stop_reset:
	sh_msiof_reset_str(p);
	sh_msiof_spi_stop(p, rx);
stop_dma:
	if (tx)
		dmaengine_terminate_all(p->ctlr->dma_tx);
no_dma_tx:
	if (rx)
		dmaengine_terminate_all(p->ctlr->dma_rx);
	sh_msiof_write(p, SIIER, 0);
	return ret;
}

static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
{
	/* src or dst can be unaligned, but not both */
	if ((unsigned long)src & 3) {
		while (words--) {
			*dst++ = swab32(get_unaligned(src));
			src++;
		}
	} else if ((unsigned long)dst & 3) {
		while (words--) {
			put_unaligned(swab32(*src++), dst);
			dst++;
		}
	} else {
		while (words--)
			*dst++ = swab32(*src++);
	}
}

static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
{
	/* src or dst can be unaligned, but not both */
	if ((unsigned long)src & 3) {
		while (words--) {
			*dst++ = swahw32(get_unaligned(src));
			src++;
		}
	} else if ((unsigned long)dst & 3) {
		while (words--) {
			put_unaligned(swahw32(*src++), dst);
			dst++;
		}
	} else {
		while (words--)
			*dst++ = swahw32(*src++);
	}
}

static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
{
	memcpy(dst, src, words * 4);
}

static int sh_msiof_transfer_one(struct spi_controller *ctlr,
				 struct spi_device *spi,
				 struct spi_transfer *t)
{
	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
	void (*copy32)(u32 *, const u32 *, unsigned int);
	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
	const void *tx_buf = t->tx_buf;
	void *rx_buf = t->rx_buf;
	unsigned int len = t->len;
	unsigned int bits = t->bits_per_word;
	unsigned int bytes_per_word;
	unsigned int words;
	int n;
	bool swab;
	int ret;

	/* reset registers */
	sh_msiof_spi_reset_regs(p);

	/* setup clocks (clock already enabled in chipselect()) */
	if (!spi_controller_is_slave(p->ctlr))
		sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);

	while (ctlr->dma_tx && len > 15) {
		/*
		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
		 *  words, with byte resp. word swapping.
		 */
		unsigned int l = 0;

		if (tx_buf)
			l = min(round_down(len, 4), p->tx_fifo_size * 4);
		if (rx_buf)
			l = min(round_down(len, 4), p->rx_fifo_size * 4);

		if (bits <= 8) {
			copy32 = copy_bswap32;
		} else if (bits <= 16) {
			copy32 = copy_wswap32;
		} else {
			copy32 = copy_plain32;
		}

		if (tx_buf)
			copy32(p->tx_dma_page, tx_buf, l / 4);

		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
		if (ret == -EAGAIN) {
			dev_warn_once(&p->pdev->dev,
				"DMA not available, falling back to PIO\n");
			break;
		}
		if (ret)
			return ret;

		if (rx_buf) {
			copy32(rx_buf, p->rx_dma_page, l / 4);
			rx_buf += l;
		}
		if (tx_buf)
			tx_buf += l;

		len -= l;
		if (!len)
			return 0;
	}

	if (bits <= 8 && len > 15) {
		bits = 32;
		swab = true;
	} else {
		swab = false;
	}

	/* setup bytes per word and fifo read/write functions */
	if (bits <= 8) {
		bytes_per_word = 1;
		tx_fifo = sh_msiof_spi_write_fifo_8;
		rx_fifo = sh_msiof_spi_read_fifo_8;
	} else if (bits <= 16) {
		bytes_per_word = 2;
		if ((unsigned long)tx_buf & 0x01)
			tx_fifo = sh_msiof_spi_write_fifo_16u;
		else
			tx_fifo = sh_msiof_spi_write_fifo_16;

		if ((unsigned long)rx_buf & 0x01)
			rx_fifo = sh_msiof_spi_read_fifo_16u;
		else
			rx_fifo = sh_msiof_spi_read_fifo_16;
	} else if (swab) {
		bytes_per_word = 4;
		if ((unsigned long)tx_buf & 0x03)
			tx_fifo = sh_msiof_spi_write_fifo_s32u;
		else
			tx_fifo = sh_msiof_spi_write_fifo_s32;

		if ((unsigned long)rx_buf & 0x03)
			rx_fifo = sh_msiof_spi_read_fifo_s32u;
		else
			rx_fifo = sh_msiof_spi_read_fifo_s32;
	} else {
		bytes_per_word = 4;
		if ((unsigned long)tx_buf & 0x03)
			tx_fifo = sh_msiof_spi_write_fifo_32u;
		else
			tx_fifo = sh_msiof_spi_write_fifo_32;

		if ((unsigned long)rx_buf & 0x03)
			rx_fifo = sh_msiof_spi_read_fifo_32u;
		else
			rx_fifo = sh_msiof_spi_read_fifo_32;
	}

	/* transfer in fifo sized chunks */
	words = len / bytes_per_word;

	while (words > 0) {
		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
					   words, bits);
		if (n < 0)
			return n;

		if (tx_buf)
			tx_buf += n * bytes_per_word;
		if (rx_buf)
			rx_buf += n * bytes_per_word;
		words -= n;

		if (words == 0 && (len % bytes_per_word)) {
			words = len % bytes_per_word;
			bits = t->bits_per_word;
			bytes_per_word = 1;
			tx_fifo = sh_msiof_spi_write_fifo_8;
			rx_fifo = sh_msiof_spi_read_fifo_8;
		}
	}

	return 0;
}

static const struct sh_msiof_chipdata sh_data = {
	.bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32),
	.tx_fifo_size = 64,
	.rx_fifo_size = 64,
	.ctlr_flags = 0,
	.min_div_pow = 0,
};

static const struct sh_msiof_chipdata rcar_gen2_data = {
	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
	.tx_fifo_size = 64,
	.rx_fifo_size = 64,
	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
	.min_div_pow = 0,
};

static const struct sh_msiof_chipdata rcar_gen3_data = {
	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
	.tx_fifo_size = 64,
	.rx_fifo_size = 64,
	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
	.min_div_pow = 1,
};

static const struct of_device_id sh_msiof_match[] = {
	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
	{ .compatible = "renesas,msiof-r8a7743",   .data = &rcar_gen2_data },
	{ .compatible = "renesas,msiof-r8a7745",   .data = &rcar_gen2_data },
	{ .compatible = "renesas,msiof-r8a7790",   .data = &rcar_gen2_data },
	{ .compatible = "renesas,msiof-r8a7791",   .data = &rcar_gen2_data },
	{ .compatible = "renesas,msiof-r8a7792",   .data = &rcar_gen2_data },
	{ .compatible = "renesas,msiof-r8a7793",   .data = &rcar_gen2_data },
	{ .compatible = "renesas,msiof-r8a7794",   .data = &rcar_gen2_data },
	{ .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
	{ .compatible = "renesas,msiof-r8a7796",   .data = &rcar_gen3_data },
	{ .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
	{ .compatible = "renesas,sh-msiof",        .data = &sh_data }, /* Deprecated */
	{},
};
MODULE_DEVICE_TABLE(of, sh_msiof_match);

#ifdef CONFIG_OF
static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
{
	struct sh_msiof_spi_info *info;
	struct device_node *np = dev->of_node;
	u32 num_cs = 1;

	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
	if (!info)
		return NULL;

	info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
							    : MSIOF_SPI_MASTER;

	/* Parse the MSIOF properties */
	if (info->mode == MSIOF_SPI_MASTER)
		of_property_read_u32(np, "num-cs", &num_cs);
	of_property_read_u32(np, "renesas,tx-fifo-size",
					&info->tx_fifo_override);
	of_property_read_u32(np, "renesas,rx-fifo-size",
					&info->rx_fifo_override);
	of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
	of_property_read_u32(np, "renesas,syncdl", &info->syncdl);

	info->num_chipselect = num_cs;

	return info;
}
#else
static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
{
	return NULL;
}
#endif

static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
{
	dma_cap_mask_t mask;
	struct dma_chan *chan;
	struct dma_slave_config cfg;
	int ret;

	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);

	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
				(void *)(unsigned long)id, dev,
				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
	if (!chan) {
		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
		return NULL;
	}

	memset(&cfg, 0, sizeof(cfg));
	cfg.direction = dir;
	if (dir == DMA_MEM_TO_DEV) {
		cfg.dst_addr = port_addr;
		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	} else {
		cfg.src_addr = port_addr;
		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	}

	ret = dmaengine_slave_config(chan, &cfg);
	if (ret) {
		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
		dma_release_channel(chan);
		return NULL;
	}

	return chan;
}

static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
{
	struct platform_device *pdev = p->pdev;
	struct device *dev = &pdev->dev;
	const struct sh_msiof_spi_info *info = p->info;
	unsigned int dma_tx_id, dma_rx_id;
	const struct resource *res;
	struct spi_controller *ctlr;
	struct device *tx_dev, *rx_dev;

	if (dev->of_node) {
		/* In the OF case we will get the slave IDs from the DT */
		dma_tx_id = 0;
		dma_rx_id = 0;
	} else if (info && info->dma_tx_id && info->dma_rx_id) {
		dma_tx_id = info->dma_tx_id;
		dma_rx_id = info->dma_rx_id;
	} else {
		/* The driver assumes no error */
		return 0;
	}

	/* The DMA engine uses the second register set, if present */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	if (!res)
		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

	ctlr = p->ctlr;
	ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
						 dma_tx_id, res->start + SITFDR);
	if (!ctlr->dma_tx)
		return -ENODEV;

	ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
						 dma_rx_id, res->start + SIRFDR);
	if (!ctlr->dma_rx)
		goto free_tx_chan;

	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
	if (!p->tx_dma_page)
		goto free_rx_chan;

	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
	if (!p->rx_dma_page)
		goto free_tx_page;

	tx_dev = ctlr->dma_tx->device->dev;
	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
					DMA_TO_DEVICE);
	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
		goto free_rx_page;

	rx_dev = ctlr->dma_rx->device->dev;
	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
					DMA_FROM_DEVICE);
	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
		goto unmap_tx_page;

	dev_info(dev, "DMA available");
	return 0;

unmap_tx_page:
	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
free_rx_page:
	free_page((unsigned long)p->rx_dma_page);
free_tx_page:
	free_page((unsigned long)p->tx_dma_page);
free_rx_chan:
	dma_release_channel(ctlr->dma_rx);
free_tx_chan:
	dma_release_channel(ctlr->dma_tx);
	ctlr->dma_tx = NULL;
	return -ENODEV;
}

static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
{
	struct spi_controller *ctlr = p->ctlr;

	if (!ctlr->dma_tx)
		return;

	dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE,
			 DMA_FROM_DEVICE);
	dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE,
			 DMA_TO_DEVICE);
	free_page((unsigned long)p->rx_dma_page);
	free_page((unsigned long)p->tx_dma_page);
	dma_release_channel(ctlr->dma_rx);
	dma_release_channel(ctlr->dma_tx);
}

static int sh_msiof_spi_probe(struct platform_device *pdev)
{
	struct spi_controller *ctlr;
	const struct sh_msiof_chipdata *chipdata;
	struct sh_msiof_spi_info *info;
	struct sh_msiof_spi_priv *p;
	int i;
	int ret;

	chipdata = of_device_get_match_data(&pdev->dev);
	if (chipdata) {
		info = sh_msiof_spi_parse_dt(&pdev->dev);
	} else {
		chipdata = (const void *)pdev->id_entry->driver_data;
		info = dev_get_platdata(&pdev->dev);
	}

	if (!info) {
		dev_err(&pdev->dev, "failed to obtain device info\n");
		return -ENXIO;
	}

	if (info->mode == MSIOF_SPI_SLAVE)
		ctlr = spi_alloc_slave(&pdev->dev,
				       sizeof(struct sh_msiof_spi_priv));
	else
		ctlr = spi_alloc_master(&pdev->dev,
					sizeof(struct sh_msiof_spi_priv));
	if (ctlr == NULL)
		return -ENOMEM;

	p = spi_controller_get_devdata(ctlr);

	platform_set_drvdata(pdev, p);
	p->ctlr = ctlr;
	p->info = info;
	p->min_div_pow = chipdata->min_div_pow;

	init_completion(&p->done);
	init_completion(&p->done_txdma);

	p->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(p->clk)) {
		dev_err(&pdev->dev, "cannot get clock\n");
		ret = PTR_ERR(p->clk);
		goto err1;
	}

	i = platform_get_irq(pdev, 0);
	if (i < 0) {
		ret = i;
		goto err1;
	}

	p->mapbase = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(p->mapbase)) {
		ret = PTR_ERR(p->mapbase);
		goto err1;
	}

	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
			       dev_name(&pdev->dev), p);
	if (ret) {
		dev_err(&pdev->dev, "unable to request irq\n");
		goto err1;
	}

	p->pdev = pdev;
	pm_runtime_enable(&pdev->dev);

	/* Platform data may override FIFO sizes */
	p->tx_fifo_size = chipdata->tx_fifo_size;
	p->rx_fifo_size = chipdata->rx_fifo_size;
	if (p->info->tx_fifo_override)
		p->tx_fifo_size = p->info->tx_fifo_override;
	if (p->info->rx_fifo_override)
		p->rx_fifo_size = p->info->rx_fifo_override;

	/* init controller code */
	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
	ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
	ctlr->flags = chipdata->ctlr_flags;
	ctlr->bus_num = pdev->id;
	ctlr->num_chipselect = p->info->num_chipselect;
	ctlr->dev.of_node = pdev->dev.of_node;
	ctlr->setup = sh_msiof_spi_setup;
	ctlr->prepare_message = sh_msiof_prepare_message;
	ctlr->slave_abort = sh_msiof_slave_abort;
	ctlr->bits_per_word_mask = chipdata->bits_per_word_mask;
	ctlr->auto_runtime_pm = true;
	ctlr->transfer_one = sh_msiof_transfer_one;
	ctlr->use_gpio_descriptors = true;
	ctlr->max_native_cs = MAX_SS;

	ret = sh_msiof_request_dma(p);
	if (ret < 0)
		dev_warn(&pdev->dev, "DMA not available, using PIO\n");

	ret = devm_spi_register_controller(&pdev->dev, ctlr);
	if (ret < 0) {
		dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
		goto err2;
	}

	return 0;

 err2:
	sh_msiof_release_dma(p);
	pm_runtime_disable(&pdev->dev);
 err1:
	spi_controller_put(ctlr);
	return ret;
}

static int sh_msiof_spi_remove(struct platform_device *pdev)
{
	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);

	sh_msiof_release_dma(p);
	pm_runtime_disable(&pdev->dev);
	return 0;
}

static const struct platform_device_id spi_driver_ids[] = {
	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
	{},
};
MODULE_DEVICE_TABLE(platform, spi_driver_ids);

#ifdef CONFIG_PM_SLEEP
static int sh_msiof_spi_suspend(struct device *dev)
{
	struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);

	return spi_controller_suspend(p->ctlr);
}

static int sh_msiof_spi_resume(struct device *dev)
{
	struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);

	return spi_controller_resume(p->ctlr);
}

static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
			 sh_msiof_spi_resume);
#define DEV_PM_OPS	(&sh_msiof_spi_pm_ops)
#else
#define DEV_PM_OPS	NULL
#endif /* CONFIG_PM_SLEEP */

static struct platform_driver sh_msiof_spi_drv = {
	.probe		= sh_msiof_spi_probe,
	.remove		= sh_msiof_spi_remove,
	.id_table	= spi_driver_ids,
	.driver		= {
		.name		= "spi_sh_msiof",
		.pm		= DEV_PM_OPS,
		.of_match_table = of_match_ptr(sh_msiof_match),
	},
};
module_platform_driver(sh_msiof_spi_drv);

MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver");
MODULE_AUTHOR("Magnus Damm");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:spi_sh_msiof");