i2c-intel-mid.c 29.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
/*
 * Support for Moorestown/Medfield I2C chip
 *
 * Copyright (c) 2009 Intel Corporation.
 * Copyright (c) 2009 Synopsys. Inc.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License, version
 * 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc., 51
 * Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/stat.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/pm_runtime.h>
#include <linux/io.h>

#define DRIVER_NAME	"i2c-intel-mid"
#define VERSION		"Version 0.5ac2"
#define PLATFORM	"Moorestown/Medfield"

/* Tables use: 0 Moorestown, 1 Medfield */
#define NUM_PLATFORMS	2
enum platform_enum {
	MOORESTOWN = 0,
	MEDFIELD = 1,
};

enum mid_i2c_status {
	STATUS_IDLE = 0,
	STATUS_READ_START,
	STATUS_READ_IN_PROGRESS,
	STATUS_READ_SUCCESS,
	STATUS_WRITE_START,
	STATUS_WRITE_SUCCESS,
	STATUS_XFER_ABORT,
	STATUS_STANDBY
};

/**
 * struct intel_mid_i2c_private	- per device I²C context
 * @adap: core i2c layer adapter information
 * @dev: device reference for power management
 * @base: register base
 * @speed: speed mode for this port
 * @complete: completion object for transaction wait
 * @abort: reason for last abort
 * @rx_buf: pointer into working receive buffer
 * @rx_buf_len: receive buffer length
 * @status: adapter state machine
 * @msg: the message we are currently processing
 * @platform: the MID device type we are part of
 * @lock: transaction serialization
 *
 * We allocate one of these per device we discover, it holds the core
 * i2c layer objects and the data we need to track privately.
 */
struct intel_mid_i2c_private {
	struct i2c_adapter adap;
	struct device *dev;
	void __iomem *base;
	int speed;
	struct completion complete;
	int abort;
	u8 *rx_buf;
	int rx_buf_len;
	enum mid_i2c_status status;
	struct i2c_msg *msg;
	enum platform_enum platform;
	struct mutex lock;
};

#define NUM_SPEEDS		3

#define ACTIVE			0
#define STANDBY			1


/* Control register */
#define IC_CON			0x00
#define SLV_DIS			(1 << 6)	/* Disable slave mode */
#define RESTART			(1 << 5)	/* Send a Restart condition */
#define	ADDR_10BIT		(1 << 4)	/* 10-bit addressing */
#define	STANDARD_MODE		(1 << 1)	/* standard mode */
#define FAST_MODE		(2 << 1)	/* fast mode */
#define HIGH_MODE		(3 << 1)	/* high speed mode */
#define	MASTER_EN		(1 << 0)	/* Master mode */

/* Target address register */
#define IC_TAR			0x04
#define IC_TAR_10BIT_ADDR	(1 << 12)	/* 10-bit addressing */
#define IC_TAR_SPECIAL		(1 << 11)	/* Perform special I2C cmd */
#define IC_TAR_GC_OR_START	(1 << 10)	/* 0: Gerneral Call Address */
						/* 1: START BYTE */
/* Slave Address Register */
#define IC_SAR			0x08		/* Not used in Master mode */

/* High Speed Master Mode Code Address Register */
#define IC_HS_MADDR		0x0c

/* Rx/Tx Data Buffer and Command Register */
#define IC_DATA_CMD		0x10
#define IC_RD			(1 << 8)	/* 1: Read 0: Write */

/* Standard Speed Clock SCL High Count Register */
#define IC_SS_SCL_HCNT		0x14

/* Standard Speed Clock SCL Low Count Register */
#define IC_SS_SCL_LCNT		0x18

/* Fast Speed Clock SCL High Count Register */
#define IC_FS_SCL_HCNT		0x1c

/* Fast Spedd Clock SCL Low Count Register */
#define IC_FS_SCL_LCNT		0x20

/* High Speed Clock SCL High Count Register */
#define IC_HS_SCL_HCNT		0x24

/* High Speed Clock SCL Low Count Register */
#define IC_HS_SCL_LCNT		0x28

/* Interrupt Status Register */
#define IC_INTR_STAT		0x2c		/* Read only */
#define R_GEN_CALL		(1 << 11)
#define R_START_DET		(1 << 10)
#define R_STOP_DET		(1 << 9)
#define R_ACTIVITY		(1 << 8)
#define R_RX_DONE		(1 << 7)
#define	R_TX_ABRT		(1 << 6)
#define R_RD_REQ		(1 << 5)
#define R_TX_EMPTY		(1 << 4)
#define R_TX_OVER		(1 << 3)
#define	R_RX_FULL		(1 << 2)
#define	R_RX_OVER		(1 << 1)
#define R_RX_UNDER		(1 << 0)

/* Interrupt Mask Register */
#define IC_INTR_MASK		0x30		/* Read and Write */
#define M_GEN_CALL		(1 << 11)
#define M_START_DET		(1 << 10)
#define M_STOP_DET		(1 << 9)
#define M_ACTIVITY		(1 << 8)
#define M_RX_DONE		(1 << 7)
#define	M_TX_ABRT		(1 << 6)
#define M_RD_REQ		(1 << 5)
#define M_TX_EMPTY		(1 << 4)
#define M_TX_OVER		(1 << 3)
#define	M_RX_FULL		(1 << 2)
#define	M_RX_OVER		(1 << 1)
#define M_RX_UNDER		(1 << 0)

/* Raw Interrupt Status Register */
#define IC_RAW_INTR_STAT	0x34		/* Read Only */
#define GEN_CALL		(1 << 11)	/* General call */
#define START_DET		(1 << 10)	/* (RE)START occurred */
#define STOP_DET		(1 << 9)	/* STOP occurred */
#define ACTIVITY		(1 << 8)	/* Bus busy */
#define RX_DONE			(1 << 7)	/* Not used in Master mode */
#define	TX_ABRT			(1 << 6)	/* Transmit Abort */
#define RD_REQ			(1 << 5)	/* Not used in Master mode */
#define TX_EMPTY		(1 << 4)	/* TX FIFO <= threshold */
#define TX_OVER			(1 << 3)	/* TX FIFO overflow */
#define	RX_FULL			(1 << 2)	/* RX FIFO >= threshold */
#define	RX_OVER			(1 << 1)	/* RX FIFO overflow */
#define RX_UNDER		(1 << 0)	/* RX FIFO empty */

/* Receive FIFO Threshold Register */
#define IC_RX_TL		0x38

/* Transmit FIFO Treshold Register */
#define IC_TX_TL		0x3c

/* Clear Combined and Individual Interrupt Register */
#define IC_CLR_INTR		0x40
#define CLR_INTR		(1 << 0)

/* Clear RX_UNDER Interrupt Register */
#define IC_CLR_RX_UNDER		0x44
#define CLR_RX_UNDER		(1 << 0)

/* Clear RX_OVER Interrupt Register */
#define IC_CLR_RX_OVER		0x48
#define CLR_RX_OVER		(1 << 0)

/* Clear TX_OVER Interrupt Register */
#define IC_CLR_TX_OVER		0x4c
#define CLR_TX_OVER		(1 << 0)

#define IC_CLR_RD_REQ		0x50

/* Clear TX_ABRT Interrupt Register */
#define IC_CLR_TX_ABRT		0x54
#define CLR_TX_ABRT		(1 << 0)
#define IC_CLR_RX_DONE		0x58

/* Clear ACTIVITY Interrupt Register */
#define IC_CLR_ACTIVITY		0x5c
#define CLR_ACTIVITY		(1 << 0)

/* Clear STOP_DET Interrupt Register */
#define IC_CLR_STOP_DET		0x60
#define CLR_STOP_DET		(1 << 0)

/* Clear START_DET Interrupt Register */
#define IC_CLR_START_DET	0x64
#define CLR_START_DET		(1 << 0)

/* Clear GEN_CALL Interrupt Register */
#define IC_CLR_GEN_CALL		0x68
#define CLR_GEN_CALL		(1 << 0)

/* Enable Register */
#define IC_ENABLE		0x6c
#define ENABLE			(1 << 0)

/* Status Register */
#define IC_STATUS		0x70		/* Read Only */
#define STAT_SLV_ACTIVITY	(1 << 6)	/* Slave not in idle */
#define STAT_MST_ACTIVITY	(1 << 5)	/* Master not in idle */
#define STAT_RFF		(1 << 4)	/* RX FIFO Full */
#define STAT_RFNE		(1 << 3)	/* RX FIFO Not Empty */
#define STAT_TFE		(1 << 2)	/* TX FIFO Empty */
#define STAT_TFNF		(1 << 1)	/* TX FIFO Not Full */
#define STAT_ACTIVITY		(1 << 0)	/* Activity Status */

/* Transmit FIFO Level Register */
#define IC_TXFLR		0x74		/* Read Only */
#define TXFLR			(1 << 0)	/* TX FIFO level */

/* Receive FIFO Level Register */
#define IC_RXFLR		0x78		/* Read Only */
#define RXFLR			(1 << 0)	/* RX FIFO level */

/* Transmit Abort Source Register */
#define IC_TX_ABRT_SOURCE	0x80
#define ABRT_SLVRD_INTX		(1 << 15)
#define ABRT_SLV_ARBLOST	(1 << 14)
#define ABRT_SLVFLUSH_TXFIFO	(1 << 13)
#define	ARB_LOST		(1 << 12)
#define ABRT_MASTER_DIS		(1 << 11)
#define ABRT_10B_RD_NORSTRT	(1 << 10)
#define ABRT_SBYTE_NORSTRT	(1 << 9)
#define ABRT_HS_NORSTRT		(1 << 8)
#define ABRT_SBYTE_ACKDET	(1 << 7)
#define ABRT_HS_ACKDET		(1 << 6)
#define ABRT_GCALL_READ		(1 << 5)
#define ABRT_GCALL_NOACK	(1 << 4)
#define ABRT_TXDATA_NOACK	(1 << 3)
#define ABRT_10ADDR2_NOACK	(1 << 2)
#define ABRT_10ADDR1_NOACK	(1 << 1)
#define ABRT_7B_ADDR_NOACK	(1 << 0)

/* Enable Status Register */
#define IC_ENABLE_STATUS	0x9c
#define IC_EN			(1 << 0)	/* I2C in an enabled state */

/* Component Parameter Register 1*/
#define IC_COMP_PARAM_1		0xf4
#define APB_DATA_WIDTH		(0x3 << 0)

/* added by xiaolin --begin */
#define SS_MIN_SCL_HIGH         4000
#define SS_MIN_SCL_LOW          4700
#define FS_MIN_SCL_HIGH         600
#define FS_MIN_SCL_LOW          1300
#define HS_MIN_SCL_HIGH_100PF   60
#define HS_MIN_SCL_LOW_100PF    120

#define STANDARD		0
#define FAST			1
#define HIGH			2

#define NUM_SPEEDS		3

static int speed_mode[6] = {
	FAST,
	FAST,
	FAST,
	STANDARD,
	FAST,
	FAST
};

static int ctl_num = 6;
module_param_array(speed_mode, int, &ctl_num, S_IRUGO);
MODULE_PARM_DESC(speed_mode, "Set the speed of the i2c interface (0-2)");

/**
 * intel_mid_i2c_disable - Disable I2C controller
 * @adap: struct pointer to i2c_adapter
 *
 * Return Value:
 * 0		success
 * -EBUSY	if device is busy
 * -ETIMEDOUT	if i2c cannot be disabled within the given time
 *
 * I2C bus state should be checked prior to disabling the hardware. If bus is
 * not in idle state, an errno is returned. Write "0" to IC_ENABLE to disable
 * I2C controller.
 */
static int intel_mid_i2c_disable(struct i2c_adapter *adap)
{
	struct intel_mid_i2c_private *i2c = i2c_get_adapdata(adap);
	int err = 0;
	int count = 0;
	int ret1, ret2;
	static const u16 delay[NUM_SPEEDS] = {100, 25, 3};

	/* Set IC_ENABLE to 0 */
	writel(0, i2c->base + IC_ENABLE);

	/* Check if device is busy */
	dev_dbg(&adap->dev, "mrst i2c disable\n");
	while ((ret1 = readl(i2c->base + IC_ENABLE_STATUS) & 0x1)
		|| (ret2 = readl(i2c->base + IC_STATUS) & 0x1)) {
		udelay(delay[i2c->speed]);
		writel(0, i2c->base + IC_ENABLE);
		dev_dbg(&adap->dev, "i2c is busy, count is %d speed %d\n",
			count, i2c->speed);
		if (count++ > 10) {
			err = -ETIMEDOUT;
			break;
		}
	}

	/* Clear all interrupts */
	readl(i2c->base + IC_CLR_INTR);
	readl(i2c->base + IC_CLR_STOP_DET);
	readl(i2c->base + IC_CLR_START_DET);
	readl(i2c->base + IC_CLR_ACTIVITY);
	readl(i2c->base + IC_CLR_TX_ABRT);
	readl(i2c->base + IC_CLR_RX_OVER);
	readl(i2c->base + IC_CLR_RX_UNDER);
	readl(i2c->base + IC_CLR_TX_OVER);
	readl(i2c->base + IC_CLR_RX_DONE);
	readl(i2c->base + IC_CLR_GEN_CALL);

	/* Disable all interupts */
	writel(0x0000, i2c->base + IC_INTR_MASK);

	return err;
}

/**
 * intel_mid_i2c_hwinit - Initialize the I2C hardware registers
 * @dev: pci device struct pointer
 *
 * This function will be called in intel_mid_i2c_probe() before device
 * registration.
 *
 * Return Values:
 * 0		success
 * -EBUSY	i2c cannot be disabled
 * -ETIMEDOUT	i2c cannot be disabled
 * -EFAULT	If APB data width is not 32-bit wide
 *
 * I2C should be disabled prior to other register operation. If failed, an
 * errno is returned. Mask and Clear all interrpts, this should be done at
 * first.  Set common registers which will not be modified during normal
 * transfers, including: control register, FIFO threshold and clock freq.
 * Check APB data width at last.
 */
static int intel_mid_i2c_hwinit(struct intel_mid_i2c_private *i2c)
{
	int err;

	static const u16 hcnt[NUM_PLATFORMS][NUM_SPEEDS] = {
		{ 0x75,  0x15, 0x07 },
		{ 0x04c,  0x10, 0x06 }
	};
	static const u16 lcnt[NUM_PLATFORMS][NUM_SPEEDS] = {
		{ 0x7C,  0x21, 0x0E },
		{ 0x053, 0x19, 0x0F }
	};

	/* Disable i2c first */
	err = intel_mid_i2c_disable(&i2c->adap);
	if (err)
		return err;

	/*
	 * Setup clock frequency and speed mode
	 * Enable restart condition,
	 * enable master FSM, disable slave FSM,
	 * use target address when initiating transfer
	 */

	writel((i2c->speed + 1) << 1 | SLV_DIS | RESTART | MASTER_EN,
		i2c->base + IC_CON);
	writel(hcnt[i2c->platform][i2c->speed],
		i2c->base + (IC_SS_SCL_HCNT + (i2c->speed << 3)));
	writel(lcnt[i2c->platform][i2c->speed],
		i2c->base + (IC_SS_SCL_LCNT + (i2c->speed << 3)));

	/* Set tranmit & receive FIFO threshold to zero */
	writel(0x0, i2c->base + IC_RX_TL);
	writel(0x0, i2c->base + IC_TX_TL);

	return 0;
}

/**
 * intel_mid_i2c_func - Return the supported three I2C operations.
 * @adapter: i2c_adapter struct pointer
 */
static u32 intel_mid_i2c_func(struct i2c_adapter *adapter)
{
	return I2C_FUNC_I2C | I2C_FUNC_10BIT_ADDR | I2C_FUNC_SMBUS_EMUL;
}

/**
 * intel_mid_i2c_address_neq - To check if the addresses for different i2c messages
 * are equal.
 * @p1: first i2c_msg
 * @p2: second i2c_msg
 *
 * Return Values:
 * 0	 if addresses are equal
 * 1	 if not equal
 *
 * Within a single transfer, the I2C client may need to send its address more
 * than once. So a check if the addresses match is needed.
 */
static inline bool intel_mid_i2c_address_neq(const struct i2c_msg *p1,
				       const struct i2c_msg *p2)
{
	if (p1->addr != p2->addr)
		return 1;
	if ((p1->flags ^ p2->flags) & I2C_M_TEN)
		return 1;
	return 0;
}

/**
 * intel_mid_i2c_abort - To handle transfer abortions and print error messages.
 * @adap: i2c_adapter struct pointer
 *
 * By reading register IC_TX_ABRT_SOURCE, various transfer errors can be
 * distingushed. At present, no circumstances have been found out that
 * multiple errors would be occurred simutaneously, so we simply use the
 * register value directly.
 *
 * At last the error bits are cleared. (Note clear ABRT_SBYTE_NORSTRT bit need
 * a few extra steps)
 */
static void intel_mid_i2c_abort(struct intel_mid_i2c_private *i2c)
{
	/* Read about source register */
	int abort = i2c->abort;
	struct i2c_adapter *adap = &i2c->adap;

	/* Single transfer error check:
	 * According to databook, TX/RX FIFOs would be flushed when
	 * the abort interrupt occurred.
	 */
	if (abort & ABRT_MASTER_DIS)
		dev_err(&adap->dev,
		"initiate master operation with master mode disabled.\n");
	if (abort & ABRT_10B_RD_NORSTRT)
		dev_err(&adap->dev,
	"RESTART disabled and master sent READ cmd in 10-bit addressing.\n");

	if (abort & ABRT_SBYTE_NORSTRT) {
		dev_err(&adap->dev,
		"RESTART disabled and user is trying to send START byte.\n");
		writel(~ABRT_SBYTE_NORSTRT, i2c->base + IC_TX_ABRT_SOURCE);
		writel(RESTART, i2c->base + IC_CON);
		writel(~IC_TAR_SPECIAL, i2c->base + IC_TAR);
	}

	if (abort & ABRT_SBYTE_ACKDET)
		dev_err(&adap->dev,
			"START byte was not acknowledged.\n");
	if (abort & ABRT_TXDATA_NOACK)
		dev_dbg(&adap->dev,
			"No acknowledgement received from slave.\n");
	if (abort & ABRT_10ADDR2_NOACK)
		dev_dbg(&adap->dev,
	"The 2nd address byte of the 10-bit address was not acknowledged.\n");
	if (abort & ABRT_10ADDR1_NOACK)
		dev_dbg(&adap->dev,
	"The 1st address byte of 10-bit address was not acknowledged.\n");
	if (abort & ABRT_7B_ADDR_NOACK)
		dev_dbg(&adap->dev,
			"I2C slave device not acknowledged.\n");

	/* Clear TX_ABRT bit */
	readl(i2c->base + IC_CLR_TX_ABRT);
	i2c->status = STATUS_XFER_ABORT;
}

/**
 * xfer_read - Internal function to implement master read transfer.
 * @adap: i2c_adapter struct pointer
 * @buf: buffer in i2c_msg
 * @length: number of bytes to be read
 *
 * Return Values:
 * 0		if the read transfer succeeds
 * -ETIMEDOUT	if cannot read the "raw" interrupt register
 * -EINVAL	if a transfer abort occurred
 *
 * For every byte, a "READ" command will be loaded into IC_DATA_CMD prior to
 * data transfer. The actual "read" operation will be performed if an RX_FULL
 * interrupt occurred.
 *
 * Note there may be two interrupt signals captured, one should read
 * IC_RAW_INTR_STAT to separate between errors and actual data.
 */
static int xfer_read(struct i2c_adapter *adap, unsigned char *buf, int length)
{
	struct intel_mid_i2c_private *i2c = i2c_get_adapdata(adap);
	int i = length;
	int err;

	if (length >= 256) {
		dev_err(&adap->dev,
			"I2C FIFO cannot support larger than 256 bytes\n");
		return -EMSGSIZE;
	}

	INIT_COMPLETION(i2c->complete);

	readl(i2c->base + IC_CLR_INTR);
	writel(0x0044, i2c->base + IC_INTR_MASK);

	i2c->status = STATUS_READ_START;

	while (i--)
		writel(IC_RD, i2c->base + IC_DATA_CMD);

	i2c->status = STATUS_READ_START;
	err = wait_for_completion_interruptible_timeout(&i2c->complete, HZ);
	if (!err) {
		dev_err(&adap->dev, "Timeout for ACK from I2C slave device\n");
		intel_mid_i2c_hwinit(i2c);
		return -ETIMEDOUT;
	}
	if (i2c->status == STATUS_READ_SUCCESS)
		return 0;
	else
		return -EIO;
}

/**
 * xfer_write - Internal function to implement master write transfer.
 * @adap: i2c_adapter struct pointer
 * @buf: buffer in i2c_msg
 * @length: number of bytes to be read
 *
 * Return Values:
 * 0	if the read transfer succeeds
 * -ETIMEDOUT	if we cannot read the "raw" interrupt register
 * -EINVAL	if a transfer abort occurred
 *
 * For every byte, a "WRITE" command will be loaded into IC_DATA_CMD prior to
 * data transfer. The actual "write" operation will be performed when the
 * RX_FULL interrupt signal occurs.
 *
 * Note there may be two interrupt signals captured, one should read
 * IC_RAW_INTR_STAT to separate between errors and actual data.
 */
static int xfer_write(struct i2c_adapter *adap,
		      unsigned char *buf, int length)
{
	struct intel_mid_i2c_private *i2c = i2c_get_adapdata(adap);
	int i, err;

	if (length >= 256) {
		dev_err(&adap->dev,
			"I2C FIFO cannot support larger than 256 bytes\n");
		return -EMSGSIZE;
	}

	INIT_COMPLETION(i2c->complete);

	readl(i2c->base + IC_CLR_INTR);
	writel(0x0050, i2c->base + IC_INTR_MASK);

	i2c->status = STATUS_WRITE_START;
	for (i = 0; i < length; i++)
		writel((u16)(*(buf + i)), i2c->base + IC_DATA_CMD);

	i2c->status = STATUS_WRITE_START;
	err = wait_for_completion_interruptible_timeout(&i2c->complete, HZ);
	if (!err) {
		dev_err(&adap->dev, "Timeout for ACK from I2C slave device\n");
		intel_mid_i2c_hwinit(i2c);
		return -ETIMEDOUT;
	} else {
		if (i2c->status == STATUS_WRITE_SUCCESS)
			return 0;
		else
			return -EIO;
	}
}

static int intel_mid_i2c_setup(struct i2c_adapter *adap,  struct i2c_msg *pmsg)
{
	struct intel_mid_i2c_private *i2c = i2c_get_adapdata(adap);
	int err;
	u32 reg;
	u32 bit_mask;
	u32 mode;

	/* Disable device first */
	err = intel_mid_i2c_disable(adap);
	if (err) {
		dev_err(&adap->dev,
			"Cannot disable i2c controller, timeout\n");
		return err;
	}

	mode = (1 + i2c->speed) << 1;
	/* set the speed mode */
	reg = readl(i2c->base + IC_CON);
	if ((reg & 0x06) != mode) {
		dev_dbg(&adap->dev, "set mode %d\n", i2c->speed);
		writel((reg & ~0x6) | mode, i2c->base + IC_CON);
	}

	reg = readl(i2c->base + IC_CON);
	/* use 7-bit addressing */
	if (pmsg->flags & I2C_M_TEN) {
		if ((reg & ADDR_10BIT) != ADDR_10BIT) {
			dev_dbg(&adap->dev, "set i2c 10 bit address mode\n");
			writel(reg | ADDR_10BIT, i2c->base + IC_CON);
		}
	} else {
		if ((reg & ADDR_10BIT) != 0x0) {
			dev_dbg(&adap->dev, "set i2c 7 bit address mode\n");
			writel(reg & ~ADDR_10BIT, i2c->base + IC_CON);
		}
	}
	/* enable restart conditions */
	reg = readl(i2c->base + IC_CON);
	if ((reg & RESTART) != RESTART) {
		dev_dbg(&adap->dev, "enable restart conditions\n");
		writel(reg | RESTART, i2c->base + IC_CON);
	}

	/* enable master FSM */
	reg = readl(i2c->base + IC_CON);
	dev_dbg(&adap->dev, "ic_con reg is 0x%x\n", reg);
	writel(reg | MASTER_EN, i2c->base + IC_CON);
	if ((reg & SLV_DIS) != SLV_DIS) {
		dev_dbg(&adap->dev, "enable master FSM\n");
		writel(reg | SLV_DIS, i2c->base + IC_CON);
		dev_dbg(&adap->dev, "ic_con reg is 0x%x\n", reg);
	}

	/* use target address when initiating transfer */
	reg = readl(i2c->base + IC_TAR);
	bit_mask = IC_TAR_SPECIAL | IC_TAR_GC_OR_START;

	if ((reg & bit_mask) != 0x0) {
		dev_dbg(&adap->dev,
	 "WR: use target address when intiating transfer, i2c_tx_target\n");
		writel(reg & ~bit_mask, i2c->base + IC_TAR);
	}

	/* set target address to the I2C slave address */
	dev_dbg(&adap->dev,
		"set target address to the I2C slave address, addr is %x\n",
			pmsg->addr);
	writel(pmsg->addr | (pmsg->flags & I2C_M_TEN ? IC_TAR_10BIT_ADDR : 0),
		i2c->base + IC_TAR);

	/* Enable I2C controller */
	writel(ENABLE, i2c->base + IC_ENABLE);

	return 0;
}

/**
 * intel_mid_i2c_xfer - Main master transfer routine.
 * @adap: i2c_adapter struct pointer
 * @pmsg: i2c_msg struct pointer
 * @num: number of i2c_msg
 *
 * Return Values:
 * +		number of messages transferred
 * -ETIMEDOUT	If cannot disable I2C controller or read IC_STATUS
 * -EINVAL	If the address in i2c_msg is invalid
 *
 * This function will be registered in i2c-core and exposed to external
 * I2C clients.
 * 1. Disable I2C controller
 * 2. Unmask three interrupts: RX_FULL, TX_EMPTY, TX_ABRT
 * 3. Check if address in i2c_msg is valid
 * 4. Enable I2C controller
 * 5. Perform real transfer (call xfer_read or xfer_write)
 * 6. Wait until the current transfer is finished (check bus state)
 * 7. Mask and clear all interrupts
 */
static int intel_mid_i2c_xfer(struct i2c_adapter *adap,
			 struct i2c_msg *pmsg,
			 int num)
{
	struct intel_mid_i2c_private *i2c = i2c_get_adapdata(adap);
	int i, err = 0;

	/* if number of messages equal 0*/
	if (num == 0)
		return 0;

	pm_runtime_get(i2c->dev);

	mutex_lock(&i2c->lock);
	dev_dbg(&adap->dev, "intel_mid_i2c_xfer, process %d msg(s)\n", num);
	dev_dbg(&adap->dev, "slave address is %x\n", pmsg->addr);


	if (i2c->status != STATUS_IDLE) {
		dev_err(&adap->dev, "Adapter %d in transfer/standby\n",
								adap->nr);
		mutex_unlock(&i2c->lock);
		pm_runtime_put(i2c->dev);
		return -1;
	}


	for (i = 1; i < num; i++) {
		/* Message address equal? */
		if (unlikely(intel_mid_i2c_address_neq(&pmsg[0], &pmsg[i]))) {
			dev_err(&adap->dev, "Invalid address in msg[%d]\n", i);
			mutex_unlock(&i2c->lock);
			pm_runtime_put(i2c->dev);
			return -EINVAL;
		}
	}

	if (intel_mid_i2c_setup(adap, pmsg)) {
		mutex_unlock(&i2c->lock);
		pm_runtime_put(i2c->dev);
		return -EINVAL;
	}

	for (i = 0; i < num; i++) {
		i2c->msg = pmsg;
		i2c->status = STATUS_IDLE;
		/* Read or Write */
		if (pmsg->flags & I2C_M_RD) {
			dev_dbg(&adap->dev, "I2C_M_RD\n");
			err = xfer_read(adap, pmsg->buf, pmsg->len);
		} else {
			dev_dbg(&adap->dev, "I2C_M_WR\n");
			err = xfer_write(adap, pmsg->buf, pmsg->len);
		}
		if (err < 0)
			break;
		dev_dbg(&adap->dev, "msg[%d] transfer complete\n", i);
		pmsg++;		/* next message */
	}

	/* Mask interrupts */
	writel(0x0000, i2c->base + IC_INTR_MASK);
	/* Clear all interrupts */
	readl(i2c->base + IC_CLR_INTR);

	i2c->status = STATUS_IDLE;
	mutex_unlock(&i2c->lock);
	pm_runtime_put(i2c->dev);

	return err;
}

static int intel_mid_i2c_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct intel_mid_i2c_private *i2c = pci_get_drvdata(pdev);
	struct i2c_adapter *adap = to_i2c_adapter(dev);
	int err;

	if (i2c->status != STATUS_IDLE)
		return -1;

	intel_mid_i2c_disable(adap);

	err = pci_save_state(pdev);
	if (err) {
		dev_err(dev, "pci_save_state failed\n");
		return err;
	}

	err = pci_set_power_state(pdev, PCI_D3hot);
	if (err) {
		dev_err(dev, "pci_set_power_state failed\n");
		return err;
	}
	i2c->status = STATUS_STANDBY;

	return 0;
}

static int intel_mid_i2c_runtime_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct intel_mid_i2c_private *i2c = pci_get_drvdata(pdev);
	int err;

	if (i2c->status != STATUS_STANDBY)
		return 0;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
	err = pci_enable_device(pdev);
	if (err) {
		dev_err(dev, "pci_enable_device failed\n");
		return err;
	}

	i2c->status = STATUS_IDLE;

	intel_mid_i2c_hwinit(i2c);
	return err;
}

static void i2c_isr_read(struct intel_mid_i2c_private *i2c)
{
	struct i2c_msg *msg = i2c->msg;
	int rx_num;
	u32 len;
	u8 *buf;

	if (!(msg->flags & I2C_M_RD))
		return;

	if (i2c->status != STATUS_READ_IN_PROGRESS) {
		len = msg->len;
		buf = msg->buf;
	} else {
		len = i2c->rx_buf_len;
		buf = i2c->rx_buf;
	}

	rx_num = readl(i2c->base + IC_RXFLR);

	for (; len > 0 && rx_num > 0; len--, rx_num--)
		*buf++ = readl(i2c->base + IC_DATA_CMD);

	if (len > 0) {
		i2c->status = STATUS_READ_IN_PROGRESS;
		i2c->rx_buf_len = len;
		i2c->rx_buf = buf;
	} else
		i2c->status = STATUS_READ_SUCCESS;

	return;
}

static irqreturn_t intel_mid_i2c_isr(int this_irq, void *dev)
{
	struct intel_mid_i2c_private *i2c = dev;
	u32 stat = readl(i2c->base + IC_INTR_STAT);

	if (!stat)
		return IRQ_NONE;

	dev_dbg(&i2c->adap.dev, "%s, stat = 0x%x\n", __func__, stat);
	stat &= 0x54;

	if (i2c->status != STATUS_WRITE_START &&
	    i2c->status != STATUS_READ_START &&
	    i2c->status != STATUS_READ_IN_PROGRESS)
		goto err;

	if (stat & TX_ABRT)
		i2c->abort = readl(i2c->base + IC_TX_ABRT_SOURCE);

	readl(i2c->base + IC_CLR_INTR);

	if (stat & TX_ABRT) {
		intel_mid_i2c_abort(i2c);
		goto exit;
	}

	if (stat & RX_FULL) {
		i2c_isr_read(i2c);
		goto exit;
	}

	if (stat & TX_EMPTY) {
		if (readl(i2c->base + IC_STATUS) & 0x4)
			i2c->status = STATUS_WRITE_SUCCESS;
	}

exit:
	if (i2c->status == STATUS_READ_SUCCESS ||
	    i2c->status == STATUS_WRITE_SUCCESS ||
	    i2c->status == STATUS_XFER_ABORT) {
		/* Clear all interrupts */
		readl(i2c->base + IC_CLR_INTR);
		/* Mask interrupts */
		writel(0, i2c->base + IC_INTR_MASK);
		complete(&i2c->complete);
	}
err:
	return IRQ_HANDLED;
}

static struct i2c_algorithm intel_mid_i2c_algorithm = {
	.master_xfer	= intel_mid_i2c_xfer,
	.functionality	= intel_mid_i2c_func,
};


static const struct dev_pm_ops intel_mid_i2c_pm_ops = {
	.runtime_suspend = intel_mid_i2c_runtime_suspend,
	.runtime_resume = intel_mid_i2c_runtime_resume,
};

/**
 * intel_mid_i2c_probe - I2C controller initialization routine
 * @dev: pci device
 * @id: device id
 *
 * Return Values:
 * 0		success
 * -ENODEV	If cannot allocate pci resource
 * -ENOMEM	If the register base remapping failed, or
 *		if kzalloc failed
 *
 * Initialization steps:
 * 1. Request for PCI resource
 * 2. Remap the start address of PCI resource to register base
 * 3. Request for device memory region
 * 4. Fill in the struct members of intel_mid_i2c_private
 * 5. Call intel_mid_i2c_hwinit() for hardware initialization
 * 6. Register I2C adapter in i2c-core
 */
static int __devinit intel_mid_i2c_probe(struct pci_dev *dev,
				    const struct pci_device_id *id)
{
	struct intel_mid_i2c_private *mrst;
	unsigned long start, len;
	int err, busnum;
	void __iomem *base = NULL;

	dev_dbg(&dev->dev, "Get into probe function for I2C\n");
	err = pci_enable_device(dev);
	if (err) {
		dev_err(&dev->dev, "Failed to enable I2C PCI device (%d)\n",
			err);
		goto exit;
	}

	/* Determine the address of the I2C area */
	start = pci_resource_start(dev, 0);
	len = pci_resource_len(dev, 0);
	if (!start || len == 0) {
		dev_err(&dev->dev, "base address not set\n");
		err = -ENODEV;
		goto exit;
	}
	dev_dbg(&dev->dev, "%s i2c resource start 0x%lx, len=%ld\n",
		PLATFORM, start, len);

	err = pci_request_region(dev, 0, DRIVER_NAME);
	if (err) {
		dev_err(&dev->dev, "failed to request I2C region "
			"0x%lx-0x%lx\n", start,
			(unsigned long)pci_resource_end(dev, 0));
		goto exit;
	}

	base = ioremap_nocache(start, len);
	if (!base) {
		dev_err(&dev->dev, "I/O memory remapping failed\n");
		err = -ENOMEM;
		goto fail0;
	}

	/* Allocate the per-device data structure, intel_mid_i2c_private */
	mrst = kzalloc(sizeof(struct intel_mid_i2c_private), GFP_KERNEL);
	if (mrst == NULL) {
		dev_err(&dev->dev, "can't allocate interface\n");
		err = -ENOMEM;
		goto fail1;
	}

	/* Initialize struct members */
	snprintf(mrst->adap.name, sizeof(mrst->adap.name),
		"Intel MID I2C at %lx", start);
	mrst->adap.owner = THIS_MODULE;
	mrst->adap.algo = &intel_mid_i2c_algorithm;
	mrst->adap.dev.parent = &dev->dev;
	mrst->dev = &dev->dev;
	mrst->base = base;
	mrst->speed = STANDARD;
	mrst->abort = 0;
	mrst->rx_buf_len = 0;
	mrst->status = STATUS_IDLE;

	pci_set_drvdata(dev, mrst);
	i2c_set_adapdata(&mrst->adap, mrst);

	mrst->adap.nr = busnum = id->driver_data;
	if (dev->device <= 0x0804)
		mrst->platform = MOORESTOWN;
	else
		mrst->platform = MEDFIELD;

	dev_dbg(&dev->dev, "I2C%d\n", busnum);

	if (ctl_num > busnum) {
		if (speed_mode[busnum] < 0 || speed_mode[busnum] >= NUM_SPEEDS)
			dev_warn(&dev->dev, "invalid speed %d ignored.\n",
							speed_mode[busnum]);
		else
			mrst->speed = speed_mode[busnum];
	}

	/* Initialize i2c controller */
	err = intel_mid_i2c_hwinit(mrst);
	if (err < 0) {
		dev_err(&dev->dev, "I2C interface initialization failed\n");
		goto fail2;
	}

	mutex_init(&mrst->lock);
	init_completion(&mrst->complete);

	/* Clear all interrupts */
	readl(mrst->base + IC_CLR_INTR);
	writel(0x0000, mrst->base + IC_INTR_MASK);

	err = request_irq(dev->irq, intel_mid_i2c_isr, IRQF_SHARED,
					mrst->adap.name, mrst);
	if (err) {
		dev_err(&dev->dev, "Failed to request IRQ for I2C controller: "
			"%s", mrst->adap.name);
		goto fail2;
	}

	/* Adapter registration */
	err = i2c_add_numbered_adapter(&mrst->adap);
	if (err) {
		dev_err(&dev->dev, "Adapter %s registration failed\n",
			mrst->adap.name);
		goto fail3;
	}

	dev_dbg(&dev->dev, "%s I2C bus %d driver bind success.\n",
		(mrst->platform == MOORESTOWN) ? "Moorestown" : "Medfield",
		busnum);

	pm_runtime_enable(&dev->dev);
	return 0;

fail3:
	free_irq(dev->irq, mrst);
fail2:
	pci_set_drvdata(dev, NULL);
	kfree(mrst);
fail1:
	iounmap(base);
fail0:
	pci_release_region(dev, 0);
exit:
	return err;
}

static void __devexit intel_mid_i2c_remove(struct pci_dev *dev)
{
	struct intel_mid_i2c_private *mrst = pci_get_drvdata(dev);
	intel_mid_i2c_disable(&mrst->adap);
	if (i2c_del_adapter(&mrst->adap))
		dev_err(&dev->dev, "Failed to delete i2c adapter");

	free_irq(dev->irq, mrst);
	pci_set_drvdata(dev, NULL);
	iounmap(mrst->base);
	kfree(mrst);
	pci_release_region(dev, 0);
}

static DEFINE_PCI_DEVICE_TABLE(intel_mid_i2c_ids) = {
	/* Moorestown */
	{ PCI_VDEVICE(INTEL, 0x0802), 0 },
	{ PCI_VDEVICE(INTEL, 0x0803), 1 },
	{ PCI_VDEVICE(INTEL, 0x0804), 2 },
	/* Medfield */
	{ PCI_VDEVICE(INTEL, 0x0817), 3,},
	{ PCI_VDEVICE(INTEL, 0x0818), 4 },
	{ PCI_VDEVICE(INTEL, 0x0819), 5 },
	{ PCI_VDEVICE(INTEL, 0x082C), 0 },
	{ PCI_VDEVICE(INTEL, 0x082D), 1 },
	{ PCI_VDEVICE(INTEL, 0x082E), 2 },
	{ 0,}
};
MODULE_DEVICE_TABLE(pci, intel_mid_i2c_ids);

static struct pci_driver intel_mid_i2c_driver = {
	.name		= DRIVER_NAME,
	.id_table	= intel_mid_i2c_ids,
	.probe		= intel_mid_i2c_probe,
	.remove		= __devexit_p(intel_mid_i2c_remove),
};

static int __init intel_mid_i2c_init(void)
{
	return pci_register_driver(&intel_mid_i2c_driver);
}

static void __exit intel_mid_i2c_exit(void)
{
	pci_unregister_driver(&intel_mid_i2c_driver);
}

module_init(intel_mid_i2c_init);
module_exit(intel_mid_i2c_exit);

MODULE_AUTHOR("Ba Zheng <zheng.ba@intel.com>");
MODULE_DESCRIPTION("I2C driver for Moorestown Platform");
MODULE_LICENSE("GPL");
MODULE_VERSION(VERSION);