ne_ioctl_sample.c 20.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 */

/**
 * DOC: Sample flow of using the ioctl interface provided by the Nitro Enclaves (NE)
 * kernel driver.
 *
 * Usage
 * -----
 *
 * Load the nitro_enclaves module, setting also the enclave CPU pool. The
 * enclave CPUs need to be full cores from the same NUMA node. CPU 0 and its
 * siblings have to remain available for the primary / parent VM, so they
 * cannot be included in the enclave CPU pool.
 *
 * See the cpu list section from the kernel documentation.
 * https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html#cpu-lists
 *
 *	insmod drivers/virt/nitro_enclaves/nitro_enclaves.ko
 *	lsmod
 *
 *	The CPU pool can be set at runtime, after the kernel module is loaded.
 *
 *	echo <cpu-list> > /sys/module/nitro_enclaves/parameters/ne_cpus
 *
 *	NUMA and CPU siblings information can be found using:
 *
 *	lscpu
 *	/proc/cpuinfo
 *
 * Check the online / offline CPU list. The CPUs from the pool should be
 * offlined.
 *
 *	lscpu
 *
 * Check dmesg for any warnings / errors through the NE driver lifetime / usage.
 * The NE logs contain the "nitro_enclaves" or "pci 0000:00:02.0" pattern.
 *
 *	dmesg
 *
 * Setup hugetlbfs huge pages. The memory needs to be from the same NUMA node as
 * the enclave CPUs.
 *
 * https://www.kernel.org/doc/html/latest/admin-guide/mm/hugetlbpage.html
 *
 * By default, the allocation of hugetlb pages are distributed on all possible
 * NUMA nodes. Use the following configuration files to set the number of huge
 * pages from a NUMA node:
 *
 *	/sys/devices/system/node/node<X>/hugepages/hugepages-2048kB/nr_hugepages
 *	/sys/devices/system/node/node<X>/hugepages/hugepages-1048576kB/nr_hugepages
 *
 *	or, if not on a system with multiple NUMA nodes, can also set the number
 *	of 2 MiB / 1 GiB huge pages using
 *
 *	/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
 *	/sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages
 *
 *	In this example 256 hugepages of 2 MiB are used.
 *
 * Build and run the NE sample.
 *
 *	make -C samples/nitro_enclaves clean
 *	make -C samples/nitro_enclaves
 *	./samples/nitro_enclaves/ne_ioctl_sample <path_to_enclave_image>
 *
 * Unload the nitro_enclaves module.
 *
 *	rmmod nitro_enclaves
 *	lsmod
 */

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <poll.h>
#include <pthread.h>
#include <string.h>
#include <sys/eventfd.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

#include <linux/mman.h>
#include <linux/nitro_enclaves.h>
#include <linux/vm_sockets.h>

/**
 * NE_DEV_NAME - Nitro Enclaves (NE) misc device that provides the ioctl interface.
 */
#define NE_DEV_NAME			"/dev/nitro_enclaves"

/**
 * NE_POLL_WAIT_TIME - Timeout in seconds for each poll event.
 */
#define NE_POLL_WAIT_TIME		(60)
/**
 * NE_POLL_WAIT_TIME_MS - Timeout in milliseconds for each poll event.
 */
#define NE_POLL_WAIT_TIME_MS		(NE_POLL_WAIT_TIME * 1000)

/**
 * NE_SLEEP_TIME - Amount of time in seconds for the process to keep the enclave alive.
 */
#define NE_SLEEP_TIME			(300)

/**
 * NE_DEFAULT_NR_VCPUS - Default number of vCPUs set for an enclave.
 */
#define NE_DEFAULT_NR_VCPUS		(2)

/**
 * NE_MIN_MEM_REGION_SIZE - Minimum size of a memory region - 2 MiB.
 */
#define NE_MIN_MEM_REGION_SIZE		(2 * 1024 * 1024)

/**
 * NE_DEFAULT_NR_MEM_REGIONS - Default number of memory regions of 2 MiB set for
 *			       an enclave.
 */
#define NE_DEFAULT_NR_MEM_REGIONS	(256)

/**
 * NE_IMAGE_LOAD_HEARTBEAT_CID - Vsock CID for enclave image loading heartbeat logic.
 */
#define NE_IMAGE_LOAD_HEARTBEAT_CID	(3)
/**
 * NE_IMAGE_LOAD_HEARTBEAT_PORT - Vsock port for enclave image loading heartbeat logic.
 */
#define NE_IMAGE_LOAD_HEARTBEAT_PORT	(9000)
/**
 * NE_IMAGE_LOAD_HEARTBEAT_VALUE - Heartbeat value for enclave image loading.
 */
#define NE_IMAGE_LOAD_HEARTBEAT_VALUE	(0xb7)

/**
 * struct ne_user_mem_region - User space memory region set for an enclave.
 * @userspace_addr:	Address of the user space memory region.
 * @memory_size:	Size of the user space memory region.
 */
struct ne_user_mem_region {
	void	*userspace_addr;
	size_t	memory_size;
};

/**
 * ne_create_vm() - Create a slot for the enclave VM.
 * @ne_dev_fd:		The file descriptor of the NE misc device.
 * @slot_uid:		The generated slot uid for the enclave.
 * @enclave_fd :	The generated file descriptor for the enclave.
 *
 * Context: Process context.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_create_vm(int ne_dev_fd, unsigned long *slot_uid, int *enclave_fd)
{
	int rc = -EINVAL;
	*enclave_fd = ioctl(ne_dev_fd, NE_CREATE_VM, slot_uid);

	if (*enclave_fd < 0) {
		rc = *enclave_fd;
		switch (errno) {
		case NE_ERR_NO_CPUS_AVAIL_IN_POOL: {
			printf("Error in create VM, no CPUs available in the NE CPU pool\n");

			break;
		}

		default:
			printf("Error in create VM [%m]\n");
		}

		return rc;
	}

	return 0;
}


/**
 * ne_poll_enclave_fd() - Thread function for polling the enclave fd.
 * @data:	Argument provided for the polling function.
 *
 * Context: Process context.
 * Return:
 * * NULL on success / failure.
 */
void *ne_poll_enclave_fd(void *data)
{
	int enclave_fd = *(int *)data;
	struct pollfd fds[1] = {};
	int i = 0;
	int rc = -EINVAL;

	printf("Running from poll thread, enclave fd %d\n", enclave_fd);

	fds[0].fd = enclave_fd;
	fds[0].events = POLLIN | POLLERR | POLLHUP;

	/* Keep on polling until the current process is terminated. */
	while (1) {
		printf("[iter %d] Polling ...\n", i);

		rc = poll(fds, 1, NE_POLL_WAIT_TIME_MS);
		if (rc < 0) {
			printf("Error in poll [%m]\n");

			return NULL;
		}

		i++;

		if (!rc) {
			printf("Poll: %d seconds elapsed\n",
			       i * NE_POLL_WAIT_TIME);

			continue;
		}

		printf("Poll received value 0x%x\n", fds[0].revents);

		if (fds[0].revents & POLLHUP) {
			printf("Received POLLHUP\n");

			return NULL;
		}

		if (fds[0].revents & POLLNVAL) {
			printf("Received POLLNVAL\n");

			return NULL;
		}
	}

	return NULL;
}

/**
 * ne_alloc_user_mem_region() - Allocate a user space memory region for an enclave.
 * @ne_user_mem_region:	User space memory region allocated using hugetlbfs.
 *
 * Context: Process context.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_alloc_user_mem_region(struct ne_user_mem_region *ne_user_mem_region)
{
	/**
	 * Check available hugetlb encodings for different huge page sizes in
	 * include/uapi/linux/mman.h.
	 */
	ne_user_mem_region->userspace_addr = mmap(NULL, ne_user_mem_region->memory_size,
						  PROT_READ | PROT_WRITE,
						  MAP_PRIVATE | MAP_ANONYMOUS |
						  MAP_HUGETLB | MAP_HUGE_2MB, -1, 0);
	if (ne_user_mem_region->userspace_addr == MAP_FAILED) {
		printf("Error in mmap memory [%m]\n");

		return -1;
	}

	return 0;
}

/**
 * ne_load_enclave_image() - Place the enclave image in the enclave memory.
 * @enclave_fd :		The file descriptor associated with the enclave.
 * @ne_user_mem_regions:	User space memory regions allocated for the enclave.
 * @enclave_image_path :	The file path of the enclave image.
 *
 * Context: Process context.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_load_enclave_image(int enclave_fd, struct ne_user_mem_region ne_user_mem_regions[],
				 char *enclave_image_path)
{
	unsigned char *enclave_image = NULL;
	int enclave_image_fd = -1;
	size_t enclave_image_size = 0;
	size_t enclave_memory_size = 0;
	unsigned long i = 0;
	size_t image_written_bytes = 0;
	struct ne_image_load_info image_load_info = {
		.flags = NE_EIF_IMAGE,
	};
	struct stat image_stat_buf = {};
	int rc = -EINVAL;
	size_t temp_image_offset = 0;

	for (i = 0; i < NE_DEFAULT_NR_MEM_REGIONS; i++)
		enclave_memory_size += ne_user_mem_regions[i].memory_size;

	rc = stat(enclave_image_path, &image_stat_buf);
	if (rc < 0) {
		printf("Error in get image stat info [%m]\n");

		return rc;
	}

	enclave_image_size = image_stat_buf.st_size;

	if (enclave_memory_size < enclave_image_size) {
		printf("The enclave memory is smaller than the enclave image size\n");

		return -ENOMEM;
	}

	rc = ioctl(enclave_fd, NE_GET_IMAGE_LOAD_INFO, &image_load_info);
	if (rc < 0) {
		switch (errno) {
		case NE_ERR_NOT_IN_INIT_STATE: {
			printf("Error in get image load info, enclave not in init state\n");

			break;
		}

		case NE_ERR_INVALID_FLAG_VALUE: {
			printf("Error in get image load info, provided invalid flag\n");

			break;
		}

		default:
			printf("Error in get image load info [%m]\n");
		}

		return rc;
	}

	printf("Enclave image offset in enclave memory is %lld\n",
	       image_load_info.memory_offset);

	enclave_image_fd = open(enclave_image_path, O_RDONLY);
	if (enclave_image_fd < 0) {
		printf("Error in open enclave image file [%m]\n");

		return enclave_image_fd;
	}

	enclave_image = mmap(NULL, enclave_image_size, PROT_READ,
			     MAP_PRIVATE, enclave_image_fd, 0);
	if (enclave_image == MAP_FAILED) {
		printf("Error in mmap enclave image [%m]\n");

		return -1;
	}

	temp_image_offset = image_load_info.memory_offset;

	for (i = 0; i < NE_DEFAULT_NR_MEM_REGIONS; i++) {
		size_t bytes_to_write = 0;
		size_t memory_offset = 0;
		size_t memory_size = ne_user_mem_regions[i].memory_size;
		size_t remaining_bytes = 0;
		void *userspace_addr = ne_user_mem_regions[i].userspace_addr;

		if (temp_image_offset >= memory_size) {
			temp_image_offset -= memory_size;

			continue;
		} else if (temp_image_offset != 0) {
			memory_offset = temp_image_offset;
			memory_size -= temp_image_offset;
			temp_image_offset = 0;
		}

		remaining_bytes = enclave_image_size - image_written_bytes;
		bytes_to_write = memory_size < remaining_bytes ?
				 memory_size : remaining_bytes;

		memcpy(userspace_addr + memory_offset,
		       enclave_image + image_written_bytes, bytes_to_write);

		image_written_bytes += bytes_to_write;

		if (image_written_bytes == enclave_image_size)
			break;
	}

	munmap(enclave_image, enclave_image_size);

	close(enclave_image_fd);

	return 0;
}

/**
 * ne_set_user_mem_region() - Set a user space memory region for the given enclave.
 * @enclave_fd :		The file descriptor associated with the enclave.
 * @ne_user_mem_region :	User space memory region to be set for the enclave.
 *
 * Context: Process context.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_set_user_mem_region(int enclave_fd, struct ne_user_mem_region ne_user_mem_region)
{
	struct ne_user_memory_region mem_region = {
		.flags = NE_DEFAULT_MEMORY_REGION,
		.memory_size = ne_user_mem_region.memory_size,
		.userspace_addr = (__u64)ne_user_mem_region.userspace_addr,
	};
	int rc = -EINVAL;

	rc = ioctl(enclave_fd, NE_SET_USER_MEMORY_REGION, &mem_region);
	if (rc < 0) {
		switch (errno) {
		case NE_ERR_NOT_IN_INIT_STATE: {
			printf("Error in set user memory region, enclave not in init state\n");

			break;
		}

		case NE_ERR_INVALID_MEM_REGION_SIZE: {
			printf("Error in set user memory region, mem size not multiple of 2 MiB\n");

			break;
		}

		case NE_ERR_INVALID_MEM_REGION_ADDR: {
			printf("Error in set user memory region, invalid user space address\n");

			break;
		}

		case NE_ERR_UNALIGNED_MEM_REGION_ADDR: {
			printf("Error in set user memory region, unaligned user space address\n");

			break;
		}

		case NE_ERR_MEM_REGION_ALREADY_USED: {
			printf("Error in set user memory region, memory region already used\n");

			break;
		}

		case NE_ERR_MEM_NOT_HUGE_PAGE: {
			printf("Error in set user memory region, not backed by huge pages\n");

			break;
		}

		case NE_ERR_MEM_DIFFERENT_NUMA_NODE: {
			printf("Error in set user memory region, different NUMA node than CPUs\n");

			break;
		}

		case NE_ERR_MEM_MAX_REGIONS: {
			printf("Error in set user memory region, max memory regions reached\n");

			break;
		}

		case NE_ERR_INVALID_PAGE_SIZE: {
			printf("Error in set user memory region, has page not multiple of 2 MiB\n");

			break;
		}

		case NE_ERR_INVALID_FLAG_VALUE: {
			printf("Error in set user memory region, provided invalid flag\n");

			break;
		}

		default:
			printf("Error in set user memory region [%m]\n");
		}

		return rc;
	}

	return 0;
}

/**
 * ne_free_mem_regions() - Unmap all the user space memory regions that were set
 *			   aside for the enclave.
 * @ne_user_mem_regions:	The user space memory regions associated with an enclave.
 *
 * Context: Process context.
 */
static void ne_free_mem_regions(struct ne_user_mem_region ne_user_mem_regions[])
{
	unsigned int i = 0;

	for (i = 0; i < NE_DEFAULT_NR_MEM_REGIONS; i++)
		munmap(ne_user_mem_regions[i].userspace_addr,
		       ne_user_mem_regions[i].memory_size);
}

/**
 * ne_add_vcpu() - Add a vCPU to the given enclave.
 * @enclave_fd :	The file descriptor associated with the enclave.
 * @vcpu_id:		vCPU id to be set for the enclave, either provided or
 *			auto-generated (if provided vCPU id is 0).
 *
 * Context: Process context.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_add_vcpu(int enclave_fd, unsigned int *vcpu_id)
{
	int rc = -EINVAL;

	rc = ioctl(enclave_fd, NE_ADD_VCPU, vcpu_id);
	if (rc < 0) {
		switch (errno) {
		case NE_ERR_NO_CPUS_AVAIL_IN_POOL: {
			printf("Error in add vcpu, no CPUs available in the NE CPU pool\n");

			break;
		}

		case NE_ERR_VCPU_ALREADY_USED: {
			printf("Error in add vcpu, the provided vCPU is already used\n");

			break;
		}

		case NE_ERR_VCPU_NOT_IN_CPU_POOL: {
			printf("Error in add vcpu, the provided vCPU is not in the NE CPU pool\n");

			break;
		}

		case NE_ERR_VCPU_INVALID_CPU_CORE: {
			printf("Error in add vcpu, the core id of the provided vCPU is invalid\n");

			break;
		}

		case NE_ERR_NOT_IN_INIT_STATE: {
			printf("Error in add vcpu, enclave not in init state\n");

			break;
		}

		case NE_ERR_INVALID_VCPU: {
			printf("Error in add vcpu, the provided vCPU is out of avail CPUs range\n");

			break;
		}

		default:
			printf("Error in add vcpu [%m]\n");

		}
		return rc;
	}

	return 0;
}

/**
 * ne_start_enclave() - Start the given enclave.
 * @enclave_fd :		The file descriptor associated with the enclave.
 * @enclave_start_info :	Enclave metadata used for starting e.g. vsock CID.
 *
 * Context: Process context.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_start_enclave(int enclave_fd,  struct ne_enclave_start_info *enclave_start_info)
{
	int rc = -EINVAL;

	rc = ioctl(enclave_fd, NE_START_ENCLAVE, enclave_start_info);
	if (rc < 0) {
		switch (errno) {
		case NE_ERR_NOT_IN_INIT_STATE: {
			printf("Error in start enclave, enclave not in init state\n");

			break;
		}

		case NE_ERR_NO_MEM_REGIONS_ADDED: {
			printf("Error in start enclave, no memory regions have been added\n");

			break;
		}

		case NE_ERR_NO_VCPUS_ADDED: {
			printf("Error in start enclave, no vCPUs have been added\n");

			break;
		}

		case NE_ERR_FULL_CORES_NOT_USED: {
			printf("Error in start enclave, enclave has no full cores set\n");

			break;
		}

		case NE_ERR_ENCLAVE_MEM_MIN_SIZE: {
			printf("Error in start enclave, enclave memory is less than min size\n");

			break;
		}

		case NE_ERR_INVALID_FLAG_VALUE: {
			printf("Error in start enclave, provided invalid flag\n");

			break;
		}

		case NE_ERR_INVALID_ENCLAVE_CID: {
			printf("Error in start enclave, provided invalid enclave CID\n");

			break;
		}

		default:
			printf("Error in start enclave [%m]\n");
		}

		return rc;
	}

	return 0;
}

/**
 * ne_start_enclave_check_booted() - Start the enclave and wait for a hearbeat
 *				     from it, on a newly created vsock channel,
 *				     to check it has booted.
 * @enclave_fd :	The file descriptor associated with the enclave.
 *
 * Context: Process context.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_start_enclave_check_booted(int enclave_fd)
{
	struct sockaddr_vm client_vsock_addr = {};
	int client_vsock_fd = -1;
	socklen_t client_vsock_len = sizeof(client_vsock_addr);
	struct ne_enclave_start_info enclave_start_info = {};
	struct pollfd fds[1] = {};
	int rc = -EINVAL;
	unsigned char recv_buf = 0;
	struct sockaddr_vm server_vsock_addr = {
		.svm_family = AF_VSOCK,
		.svm_cid = NE_IMAGE_LOAD_HEARTBEAT_CID,
		.svm_port = NE_IMAGE_LOAD_HEARTBEAT_PORT,
	};
	int server_vsock_fd = -1;

	server_vsock_fd = socket(AF_VSOCK, SOCK_STREAM, 0);
	if (server_vsock_fd < 0) {
		rc = server_vsock_fd;

		printf("Error in socket [%m]\n");

		return rc;
	}

	rc = bind(server_vsock_fd, (struct sockaddr *)&server_vsock_addr,
		  sizeof(server_vsock_addr));
	if (rc < 0) {
		printf("Error in bind [%m]\n");

		goto out;
	}

	rc = listen(server_vsock_fd, 1);
	if (rc < 0) {
		printf("Error in listen [%m]\n");

		goto out;
	}

	rc = ne_start_enclave(enclave_fd, &enclave_start_info);
	if (rc < 0)
		goto out;

	printf("Enclave started, CID %llu\n", enclave_start_info.enclave_cid);

	fds[0].fd = server_vsock_fd;
	fds[0].events = POLLIN;

	rc = poll(fds, 1, NE_POLL_WAIT_TIME_MS);
	if (rc < 0) {
		printf("Error in poll [%m]\n");

		goto out;
	}

	if (!rc) {
		printf("Poll timeout, %d seconds elapsed\n", NE_POLL_WAIT_TIME);

		rc = -ETIMEDOUT;

		goto out;
	}

	if ((fds[0].revents & POLLIN) == 0) {
		printf("Poll received value %d\n", fds[0].revents);

		rc = -EINVAL;

		goto out;
	}

	rc = accept(server_vsock_fd, (struct sockaddr *)&client_vsock_addr,
		    &client_vsock_len);
	if (rc < 0) {
		printf("Error in accept [%m]\n");

		goto out;
	}

	client_vsock_fd = rc;

	/*
	 * Read the heartbeat value that the init process in the enclave sends
	 * after vsock connect.
	 */
	rc = read(client_vsock_fd, &recv_buf, sizeof(recv_buf));
	if (rc < 0) {
		printf("Error in read [%m]\n");

		goto out;
	}

	if (rc != sizeof(recv_buf) || recv_buf != NE_IMAGE_LOAD_HEARTBEAT_VALUE) {
		printf("Read %d instead of %d\n", recv_buf,
		       NE_IMAGE_LOAD_HEARTBEAT_VALUE);

		goto out;
	}

	/* Write the heartbeat value back. */
	rc = write(client_vsock_fd, &recv_buf, sizeof(recv_buf));
	if (rc < 0) {
		printf("Error in write [%m]\n");

		goto out;
	}

	rc = 0;

out:
	close(server_vsock_fd);

	return rc;
}

int main(int argc, char *argv[])
{
	int enclave_fd = -1;
	unsigned int i = 0;
	int ne_dev_fd = -1;
	struct ne_user_mem_region ne_user_mem_regions[NE_DEFAULT_NR_MEM_REGIONS] = {};
	unsigned int ne_vcpus[NE_DEFAULT_NR_VCPUS] = {};
	int rc = -EINVAL;
	pthread_t thread_id = 0;
	unsigned long slot_uid = 0;

	if (argc != 2) {
		printf("Usage: %s <path_to_enclave_image>\n", argv[0]);

		exit(EXIT_FAILURE);
	}

	if (strlen(argv[1]) >= PATH_MAX) {
		printf("The size of the path to enclave image is higher than max path\n");

		exit(EXIT_FAILURE);
	}

	ne_dev_fd = open(NE_DEV_NAME, O_RDWR | O_CLOEXEC);
	if (ne_dev_fd < 0) {
		printf("Error in open NE device [%m]\n");

		exit(EXIT_FAILURE);
	}

	printf("Creating enclave slot ...\n");

	rc = ne_create_vm(ne_dev_fd, &slot_uid, &enclave_fd);

	close(ne_dev_fd);

	if (rc < 0)
		exit(EXIT_FAILURE);

	printf("Enclave fd %d\n", enclave_fd);

	rc = pthread_create(&thread_id, NULL, ne_poll_enclave_fd, (void *)&enclave_fd);
	if (rc < 0) {
		printf("Error in thread create [%m]\n");

		close(enclave_fd);

		exit(EXIT_FAILURE);
	}

	for (i = 0; i < NE_DEFAULT_NR_MEM_REGIONS; i++) {
		ne_user_mem_regions[i].memory_size = NE_MIN_MEM_REGION_SIZE;

		rc = ne_alloc_user_mem_region(&ne_user_mem_regions[i]);
		if (rc < 0) {
			printf("Error in alloc userspace memory region, iter %d\n", i);

			goto release_enclave_fd;
		}
	}

	rc = ne_load_enclave_image(enclave_fd, ne_user_mem_regions, argv[1]);
	if (rc < 0)
		goto release_enclave_fd;

	for (i = 0; i < NE_DEFAULT_NR_MEM_REGIONS; i++) {
		rc = ne_set_user_mem_region(enclave_fd, ne_user_mem_regions[i]);
		if (rc < 0) {
			printf("Error in set memory region, iter %d\n", i);

			goto release_enclave_fd;
		}
	}

	printf("Enclave memory regions were added\n");

	for (i = 0; i < NE_DEFAULT_NR_VCPUS; i++) {
		/*
		 * The vCPU is chosen from the enclave vCPU pool, if the value
		 * of the vcpu_id is 0.
		 */
		ne_vcpus[i] = 0;
		rc = ne_add_vcpu(enclave_fd, &ne_vcpus[i]);
		if (rc < 0) {
			printf("Error in add vcpu, iter %d\n", i);

			goto release_enclave_fd;
		}

		printf("Added vCPU %d to the enclave\n", ne_vcpus[i]);
	}

	printf("Enclave vCPUs were added\n");

	rc = ne_start_enclave_check_booted(enclave_fd);
	if (rc < 0) {
		printf("Error in the enclave start / image loading heartbeat logic [rc=%d]\n", rc);

		goto release_enclave_fd;
	}

	printf("Entering sleep for %d seconds ...\n", NE_SLEEP_TIME);

	sleep(NE_SLEEP_TIME);

	close(enclave_fd);

	ne_free_mem_regions(ne_user_mem_regions);

	exit(EXIT_SUCCESS);

release_enclave_fd:
	close(enclave_fd);
	ne_free_mem_regions(ne_user_mem_regions);

	exit(EXIT_FAILURE);
}