Kconfig 17.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
#
# RTC class/drivers configuration
#

config RTC_LIB
	tristate

menuconfig RTC_CLASS
	tristate "Real Time Clock"
	default n
	depends on !S390
	select RTC_LIB
	help
	  Generic RTC class support. If you say yes here, you will
 	  be allowed to plug one or more RTCs to your system. You will
	  probably want to enable one or more of the interfaces below.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-core.

if RTC_CLASS

config RTC_HCTOSYS
	bool "Set system time from RTC on startup and resume"
	depends on RTC_CLASS = y
	default y
	help
	  If you say yes here, the system time (wall clock) will be set using
	  the value read from a specified RTC device. This is useful to avoid
	  unnecessary fsck runs at boot time, and to network better.

config RTC_HCTOSYS_DEVICE
	string "RTC used to set the system time"
	depends on RTC_HCTOSYS = y
	default "rtc0"
	help
	  The RTC device that will be used to (re)initialize the system
	  clock, usually rtc0.  Initialization is done when the system
	  starts up, and when it resumes from a low power state.  This
	  device should record time in UTC, since the kernel won't do
	  timezone correction.

	  The driver for this RTC device must be loaded before late_initcall
	  functions run, so it must usually be statically linked.

	  This clock should be battery-backed, so that it reads the correct
	  time when the system boots from a power-off state.  Otherwise, your
	  system will need an external clock source (like an NTP server).

	  If the clock you specify here is not battery backed, it may still
	  be useful to reinitialize system time when resuming from system
	  sleep states. Do not specify an RTC here unless it stays powered
	  during all this system's supported sleep states.

config RTC_DEBUG
	bool "RTC debug support"
	depends on RTC_CLASS = y
	help
	  Say yes here to enable debugging support in the RTC framework
	  and individual RTC drivers.

comment "RTC interfaces"

config RTC_INTF_SYSFS
	boolean "/sys/class/rtc/rtcN (sysfs)"
	depends on SYSFS
	default RTC_CLASS
	help
	  Say yes here if you want to use your RTCs using sysfs interfaces,
	  /sys/class/rtc/rtc0 through /sys/.../rtcN.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-sysfs.

config RTC_INTF_PROC
	boolean "/proc/driver/rtc (procfs for rtc0)"
	depends on PROC_FS
	default RTC_CLASS
	help
	  Say yes here if you want to use your first RTC through the proc
	  interface, /proc/driver/rtc.  Other RTCs will not be available
	  through that API.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-proc.

config RTC_INTF_DEV
	boolean "/dev/rtcN (character devices)"
	default RTC_CLASS
	help
	  Say yes here if you want to use your RTCs using the /dev
	  interfaces, which "udev" sets up as /dev/rtc0 through
	  /dev/rtcN.  You may want to set up a symbolic link so one
	  of these can be accessed as /dev/rtc, which is a name
	  expected by "hwclock" and some other programs.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-dev.

config RTC_INTF_DEV_UIE_EMUL
	bool "RTC UIE emulation on dev interface"
	depends on RTC_INTF_DEV
	help
	  Provides an emulation for RTC_UIE if the underlying rtc chip
	  driver does not expose RTC_UIE ioctls.  Those requests generate
	  once-per-second update interrupts, used for synchronization.

config RTC_DRV_TEST
	tristate "Test driver/device"
	help
	  If you say yes here you get support for the
	  RTC test driver. It's a software RTC which can be
	  used to test the RTC subsystem APIs. It gets
	  the time from the system clock.
	  You want this driver only if you are doing development
	  on the RTC subsystem. Please read the source code
	  for further details.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-test.

comment "I2C RTC drivers"
	depends on I2C

if I2C

config RTC_DRV_DS1307
	tristate "Dallas/Maxim DS1307/37/38/39/40, ST M41T00"
	help
	  If you say yes here you get support for various compatible RTC
	  chips (often with battery backup) connected with I2C.  This driver
	  should handle DS1307, DS1337, DS1338, DS1339, DS1340, ST M41T00,
	  and probably other chips.  In some cases the RTC must already
	  have been initialized (by manufacturing or a bootloader).

	  The first seven registers on these chips hold an RTC, and other
	  registers may add features such as NVRAM, a trickle charger for
	  the RTC/NVRAM backup power, and alarms.  NVRAM is visible in
	  sysfs, but other chip features may not be available.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-ds1307.

config RTC_DRV_DS1374
	tristate "Dallas/Maxim DS1374"
	depends on RTC_CLASS && I2C
	help
	  If you say yes here you get support for Dallas Semiconductor
	  DS1374 real-time clock chips.  If an interrupt is associated
	  with the device, the alarm functionality is supported.

	  This driver can also be built as a module.  If so, the module
	  will be called rtc-ds1374.

config RTC_DRV_DS1672
	tristate "Dallas/Maxim DS1672"
	help
	  If you say yes here you get support for the
	  Dallas/Maxim DS1672 timekeeping chip.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-ds1672.

config RTC_DRV_MAX6900
	tristate "Maxim MAX6900"
	help
	  If you say yes here you will get support for the
	  Maxim MAX6900 I2C RTC chip.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-max6900.

config RTC_DRV_RS5C372
	tristate "Ricoh RS5C372A/B, RV5C386, RV5C387A"
	help
	  If you say yes here you get support for the
	  Ricoh RS5C372A, RS5C372B, RV5C386, and RV5C387A RTC chips.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-rs5c372.

config RTC_DRV_ISL1208
	tristate "Intersil ISL1208"
	help
	  If you say yes here you get support for the
	  Intersil ISL1208 RTC chip.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-isl1208.

config RTC_DRV_X1205
	tristate "Xicor/Intersil X1205"
	help
	  If you say yes here you get support for the
	  Xicor/Intersil X1205 RTC chip.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-x1205.

config RTC_DRV_PCF8563
	tristate "Philips PCF8563/Epson RTC8564"
	help
	  If you say yes here you get support for the
	  Philips PCF8563 RTC chip. The Epson RTC8564
	  should work as well.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-pcf8563.

config RTC_DRV_PCF8583
	tristate "Philips PCF8583"
	help
	  If you say yes here you get support for the Philips PCF8583
	  RTC chip found on Acorn RiscPCs. This driver supports the
	  platform specific method of retrieving the current year from
	  the RTC's SRAM. It will work on other platforms with the same
	  chip, but the year will probably have to be tweaked.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-pcf8583.

config RTC_DRV_M41T80
	tristate "ST M41T80/81/82/83/84/85/87"
	help
	  If you say Y here you will get support for the
	  ST M41T80 RTC chips series. Currently following chips are
	  supported: M41T80, M41T81, M41T82, M41T83, M41ST84, M41ST85
	  and M41ST87.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-m41t80.

config RTC_DRV_M41T80_WDT
	bool "ST M41T80 series RTC watchdog timer"
	depends on RTC_DRV_M41T80
	help
	  If you say Y here you will get support for the
	  watchdog timer in ST M41T80 RTC chips series.

config RTC_DRV_TWL92330
	boolean "TI TWL92330/Menelaus"
	depends on MENELAUS
	help
	  If you say yes here you get support for the RTC on the
	  TWL92330 "Menelaus" power management chip, used with OMAP2
	  platforms.  The support is integrated with the rest of
	  the Menelaus driver; it's not separate module.

config RTC_DRV_S35390A
	tristate "Seiko Instruments S-35390A"
	select BITREVERSE
	help
	  If you say yes here you will get support for the Seiko
	  Instruments S-35390A.

	  This driver can also be built as a module. If so the module
	  will be called rtc-s35390a.

config RTC_DRV_FM3130
	tristate "Ramtron FM3130"
	help
	  If you say Y here you will get support for the
	  Ramtron FM3130 RTC chips.
	  Ramtron FM3130 is a chip with two separate devices inside,
	  RTC clock and FRAM. This driver provides only RTC functionality.

	  This driver can also be built as a module. If so the module
	  will be called rtc-fm3130.

endif # I2C

comment "SPI RTC drivers"

if SPI_MASTER

config RTC_DRV_M41T94
	tristate "ST M41T94"
	help
	  If you say yes here you will get support for the
	  ST M41T94 SPI RTC chip.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-m41t94.

config RTC_DRV_DS1305
	tristate "Dallas/Maxim DS1305/DS1306"
	help
	  Select this driver to get support for the Dallas/Maxim DS1305
	  and DS1306 real time clock chips.  These support a trickle
	  charger, alarms, and NVRAM in addition to the clock.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-ds1305.

config RTC_DRV_MAX6902
	tristate "Maxim MAX6902"
	help
	  If you say yes here you will get support for the
	  Maxim MAX6902 SPI RTC chip.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-max6902.

config RTC_DRV_R9701
	tristate "Epson RTC-9701JE"
	help
	  If you say yes here you will get support for the
	  Epson RTC-9701JE SPI RTC chip.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-r9701.

config RTC_DRV_RS5C348
	tristate "Ricoh RS5C348A/B"
	help
	  If you say yes here you get support for the
	  Ricoh RS5C348A and RS5C348B RTC chips.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-rs5c348.

endif # SPI_MASTER

comment "Platform RTC drivers"

# this 'CMOS' RTC driver is arch dependent because <asm-generic/rtc.h>
# requires <asm/mc146818rtc.h> defining CMOS_READ/CMOS_WRITE, and a
# global rtc_lock ... it's not yet just another platform_device.

config RTC_DRV_CMOS
	tristate "PC-style 'CMOS'"
	depends on X86 || ALPHA || ARM || M32R || ATARI || PPC || MIPS
	default y if X86
	help
	  Say "yes" here to get direct support for the real time clock
	  found in every PC or ACPI-based system, and some other boards.
	  Specifically the original MC146818, compatibles like those in
	  PC south bridges, the DS12887 or M48T86, some multifunction
	  or LPC bus chips, and so on.

	  Your system will need to define the platform device used by
	  this driver, otherwise it won't be accessible.  This means
	  you can safely enable this driver if you don't know whether
	  or not your board has this kind of hardware.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-cmos.

config RTC_DRV_DS1216
	tristate "Dallas DS1216"
	depends on SNI_RM
	help
	  If you say yes here you get support for the Dallas DS1216 RTC chips.

config RTC_DRV_DS1302
	tristate "Dallas DS1302"
	depends on SH_SECUREEDGE5410
	help
	  If you say yes here you get support for the Dallas DS1302 RTC chips.

config RTC_DRV_DS1511
	tristate "Dallas DS1511"
	depends on RTC_CLASS
	help
	  If you say yes here you get support for the
	  Dallas DS1511 timekeeping/watchdog chip.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-ds1511.

config RTC_DRV_DS1553
	tristate "Maxim/Dallas DS1553"
	help
	  If you say yes here you get support for the
	  Maxim/Dallas DS1553 timekeeping chip.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-ds1553.

config RTC_DRV_DS1742
	tristate "Maxim/Dallas DS1742/1743"
	help
	  If you say yes here you get support for the
	  Maxim/Dallas DS1742/1743 timekeeping chip.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-ds1742.

config RTC_DRV_STK17TA8
	tristate "Simtek STK17TA8"
	depends on RTC_CLASS
	help
	  If you say yes here you get support for the
	  Simtek STK17TA8 timekeeping chip.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-stk17ta8.

config RTC_DRV_M48T86
	tristate "ST M48T86/Dallas DS12887"
	help
	  If you say Y here you will get support for the
	  ST M48T86 and Dallas DS12887 RTC chips.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-m48t86.

config RTC_DRV_M48T59
	tristate "ST M48T59"
	help
	  If you say Y here you will get support for the
	  ST M48T59 RTC chip.

	  This driver can also be built as a module, if so, the module
	  will be called "rtc-m48t59".

config RTC_DRV_V3020
	tristate "EM Microelectronic V3020"
	help
	  If you say yes here you will get support for the
	  EM Microelectronic v3020 RTC chip.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-v3020.

comment "on-CPU RTC drivers"

config RTC_DRV_OMAP
	tristate "TI OMAP1"
	depends on ARCH_OMAP15XX || ARCH_OMAP16XX || ARCH_OMAP730
	help
	  Say "yes" here to support the real time clock on TI OMAP1 chips.
	  This driver can also be built as a module called rtc-omap.

config RTC_DRV_S3C
	tristate "Samsung S3C series SoC RTC"
	depends on ARCH_S3C2410
	help
	  RTC (Realtime Clock) driver for the clock inbuilt into the
	  Samsung S3C24XX series of SoCs. This can provide periodic
	  interrupt rates from 1Hz to 64Hz for user programs, and
	  wakeup from Alarm.

	  The driver currently supports the common features on all the
	  S3C24XX range, such as the S3C2410, S3C2412, S3C2413, S3C2440
	  and S3C2442.

	  This driver can also be build as a module. If so, the module
	  will be called rtc-s3c.

config RTC_DRV_EP93XX
	tristate "Cirrus Logic EP93XX"
	depends on ARCH_EP93XX
	help
	  If you say yes here you get support for the
	  RTC embedded in the Cirrus Logic EP93XX processors.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-ep93xx.

config RTC_DRV_SA1100
	tristate "SA11x0/PXA2xx"
	depends on ARCH_SA1100 || ARCH_PXA
	help
	  If you say Y here you will get access to the real time clock
	  built into your SA11x0 or PXA2xx CPU.

	  To compile this driver as a module, choose M here: the
	  module will be called rtc-sa1100.

config RTC_DRV_SH
	tristate "SuperH On-Chip RTC"
	depends on RTC_CLASS && SUPERH
	help
	  Say Y here to enable support for the on-chip RTC found in
	  most SuperH processors.

 	  To compile this driver as a module, choose M here: the
	  module will be called rtc-sh.

config RTC_DRV_VR41XX
	tristate "NEC VR41XX"
	depends on CPU_VR41XX
	help
	  If you say Y here you will get access to the real time clock
	  built into your NEC VR41XX CPU.

	  To compile this driver as a module, choose M here: the
	  module will be called rtc-vr41xx.

config RTC_DRV_PL030
	tristate "ARM AMBA PL030 RTC"
	depends on ARM_AMBA
	help
	  If you say Y here you will get access to ARM AMBA
	  PrimeCell PL030 RTC found on certain ARM SOCs.

	  To compile this driver as a module, choose M here: the
	  module will be called rtc-pl030.

config RTC_DRV_PL031
	tristate "ARM AMBA PL031 RTC"
	depends on ARM_AMBA
	help
	  If you say Y here you will get access to ARM AMBA
	  PrimeCell PL031 RTC found on certain ARM SOCs.

	  To compile this driver as a module, choose M here: the
	  module will be called rtc-pl031.

config RTC_DRV_AT32AP700X
	tristate "AT32AP700X series RTC"
	depends on PLATFORM_AT32AP
	help
	  Driver for the internal RTC (Realtime Clock) on Atmel AVR32
	  AT32AP700x family processors.

config RTC_DRV_AT91RM9200
	tristate "AT91RM9200 or AT91SAM9RL"
	depends on ARCH_AT91RM9200 || ARCH_AT91SAM9RL
	help
	  Driver for the internal RTC (Realtime Clock) module found on
	  Atmel AT91RM9200's and AT91SAM9RL chips.  On SAM9RL chips
	  this is powered by the backup power supply.

config RTC_DRV_AT91SAM9
	tristate "AT91SAM9x/AT91CAP9"
	depends on ARCH_AT91 && !(ARCH_AT91RM9200 || ARCH_AT91X40)
	help
	  RTC driver for the Atmel AT91SAM9x and AT91CAP9 internal RTT
	  (Real Time Timer). These timers are powered by the backup power
	  supply (such as a small coin cell battery), but do not need to
	  be used as RTCs.

	  (On AT91SAM9rl chips you probably want to use the dedicated RTC
	  module and leave the RTT available for other uses.)

config RTC_DRV_AT91SAM9_RTT
	int
	range 0 1
	default 0
	prompt "RTT module Number" if ARCH_AT91SAM9263
	depends on RTC_DRV_AT91SAM9
	help
	  More than one RTT module is available.  You can choose which
	  one will be used as an RTC.  The default of zero is normally
	  OK to use, though some systems use that for non-RTC purposes.

config RTC_DRV_AT91SAM9_GPBR
	int
	range 0 3 if !ARCH_AT91SAM9263
	range 0 15 if ARCH_AT91SAM9263
	default 0
	prompt "Backup Register Number"
	depends on RTC_DRV_AT91SAM9
	help
	  The RTC driver needs to use one of the General Purpose Backup
	  Registers (GPBRs) as well as the RTT.  You can choose which one
	  will be used.  The default of zero is normally OK to use, but
	  on some systems other software needs to use that register.

config RTC_DRV_BFIN
	tristate "Blackfin On-Chip RTC"
	depends on BLACKFIN && !BF561
	help
	  If you say yes here you will get support for the
	  Blackfin On-Chip Real Time Clock.

	  This driver can also be built as a module. If so, the module
	  will be called rtc-bfin.

config RTC_DRV_RS5C313
	tristate "Ricoh RS5C313"
	depends on SH_LANDISK
	help
	  If you say yes here you get support for the Ricoh RS5C313 RTC chips.

config RTC_DRV_PPC
       tristate "PowerPC machine dependent RTC support"
       depends on PPC_MERGE
       help
	 The PowerPC kernel has machine-specific functions for accessing
	 the RTC. This exposes that functionality through the generic RTC
	 class.

endif # RTC_CLASS