rtc-cmos.c 26 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
/*
 * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
 *
 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
 * Copyright (C) 2006 David Brownell (convert to new framework)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

/*
 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
 * That defined the register interface now provided by all PCs, some
 * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
 * integrate an MC146818 clone in their southbridge, and boards use
 * that instead of discrete clones like the DS12887 or M48T86.  There
 * are also clones that connect using the LPC bus.
 *
 * That register API is also used directly by various other drivers
 * (notably for integrated NVRAM), infrastructure (x86 has code to
 * bypass the RTC framework, directly reading the RTC during boot
 * and updating minutes/seconds for systems using NTP synch) and
 * utilities (like userspace 'hwclock', if no /dev node exists).
 *
 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
 * interrupts disabled, holding the global rtc_lock, to exclude those
 * other drivers and utilities on correctly configured systems.
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/platform_device.h>
#include <linux/mod_devicetable.h>

/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
#include <asm-generic/rtc.h>

struct cmos_rtc {
	struct rtc_device	*rtc;
	struct device		*dev;
	int			irq;
	struct resource		*iomem;

	void			(*wake_on)(struct device *);
	void			(*wake_off)(struct device *);

	u8			enabled_wake;
	u8			suspend_ctrl;

	/* newer hardware extends the original register set */
	u8			day_alrm;
	u8			mon_alrm;
	u8			century;
};

/* both platform and pnp busses use negative numbers for invalid irqs */
#define is_valid_irq(n)		((n) >= 0)

static const char driver_name[] = "rtc_cmos";

/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
 * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
 */
#define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)

static inline int is_intr(u8 rtc_intr)
{
	if (!(rtc_intr & RTC_IRQF))
		return 0;
	return rtc_intr & RTC_IRQMASK;
}

/*----------------------------------------------------------------*/

/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
 * used in a broken "legacy replacement" mode.  The breakage includes
 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
 * other (better) use.
 *
 * When that broken mode is in use, platform glue provides a partial
 * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
 * want to use HPET for anything except those IRQs though...
 */
#ifdef CONFIG_HPET_EMULATE_RTC
#include <asm/hpet.h>
#else

static inline int is_hpet_enabled(void)
{
	return 0;
}

static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
{
	return 0;
}

static inline int hpet_set_rtc_irq_bit(unsigned long mask)
{
	return 0;
}

static inline int
hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
{
	return 0;
}

static inline int hpet_set_periodic_freq(unsigned long freq)
{
	return 0;
}

static inline int hpet_rtc_dropped_irq(void)
{
	return 0;
}

static inline int hpet_rtc_timer_init(void)
{
	return 0;
}

extern irq_handler_t hpet_rtc_interrupt;

static inline int hpet_register_irq_handler(irq_handler_t handler)
{
	return 0;
}

static inline int hpet_unregister_irq_handler(irq_handler_t handler)
{
	return 0;
}

#endif

/*----------------------------------------------------------------*/

static int cmos_read_time(struct device *dev, struct rtc_time *t)
{
	/* REVISIT:  if the clock has a "century" register, use
	 * that instead of the heuristic in get_rtc_time().
	 * That'll make Y3K compatility (year > 2070) easy!
	 */
	get_rtc_time(t);
	return 0;
}

static int cmos_set_time(struct device *dev, struct rtc_time *t)
{
	/* REVISIT:  set the "century" register if available
	 *
	 * NOTE: this ignores the issue whereby updating the seconds
	 * takes effect exactly 500ms after we write the register.
	 * (Also queueing and other delays before we get this far.)
	 */
	return set_rtc_time(t);
}

static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
{
	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
	unsigned char	rtc_control;

	if (!is_valid_irq(cmos->irq))
		return -EIO;

	/* Basic alarms only support hour, minute, and seconds fields.
	 * Some also support day and month, for alarms up to a year in
	 * the future.
	 */
	t->time.tm_mday = -1;
	t->time.tm_mon = -1;

	spin_lock_irq(&rtc_lock);
	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);

	if (cmos->day_alrm) {
		/* ignore upper bits on readback per ACPI spec */
		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
		if (!t->time.tm_mday)
			t->time.tm_mday = -1;

		if (cmos->mon_alrm) {
			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
			if (!t->time.tm_mon)
				t->time.tm_mon = -1;
		}
	}

	rtc_control = CMOS_READ(RTC_CONTROL);
	spin_unlock_irq(&rtc_lock);

	/* REVISIT this assumes PC style usage:  always BCD */

	if (((unsigned)t->time.tm_sec) < 0x60)
		t->time.tm_sec = BCD2BIN(t->time.tm_sec);
	else
		t->time.tm_sec = -1;
	if (((unsigned)t->time.tm_min) < 0x60)
		t->time.tm_min = BCD2BIN(t->time.tm_min);
	else
		t->time.tm_min = -1;
	if (((unsigned)t->time.tm_hour) < 0x24)
		t->time.tm_hour = BCD2BIN(t->time.tm_hour);
	else
		t->time.tm_hour = -1;

	if (cmos->day_alrm) {
		if (((unsigned)t->time.tm_mday) <= 0x31)
			t->time.tm_mday = BCD2BIN(t->time.tm_mday);
		else
			t->time.tm_mday = -1;
		if (cmos->mon_alrm) {
			if (((unsigned)t->time.tm_mon) <= 0x12)
				t->time.tm_mon = BCD2BIN(t->time.tm_mon) - 1;
			else
				t->time.tm_mon = -1;
		}
	}
	t->time.tm_year = -1;

	t->enabled = !!(rtc_control & RTC_AIE);
	t->pending = 0;

	return 0;
}

static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
{
	unsigned char	rtc_intr;

	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
	 * allegedly some older rtcs need that to handle irqs properly
	 */
	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);

	if (is_hpet_enabled())
		return;

	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
	if (is_intr(rtc_intr))
		rtc_update_irq(cmos->rtc, 1, rtc_intr);
}

static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
{
	unsigned char	rtc_control;

	/* flush any pending IRQ status, notably for update irqs,
	 * before we enable new IRQs
	 */
	rtc_control = CMOS_READ(RTC_CONTROL);
	cmos_checkintr(cmos, rtc_control);

	rtc_control |= mask;
	CMOS_WRITE(rtc_control, RTC_CONTROL);
	hpet_set_rtc_irq_bit(mask);

	cmos_checkintr(cmos, rtc_control);
}

static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
{
	unsigned char	rtc_control;

	rtc_control = CMOS_READ(RTC_CONTROL);
	rtc_control &= ~mask;
	CMOS_WRITE(rtc_control, RTC_CONTROL);
	hpet_mask_rtc_irq_bit(mask);

	cmos_checkintr(cmos, rtc_control);
}

static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
{
	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
	unsigned char	mon, mday, hrs, min, sec;

	if (!is_valid_irq(cmos->irq))
		return -EIO;

	/* REVISIT this assumes PC style usage:  always BCD */

	/* Writing 0xff means "don't care" or "match all".  */

	mon = t->time.tm_mon + 1;
	mon = (mon <= 12) ? BIN2BCD(mon) : 0xff;

	mday = t->time.tm_mday;
	mday = (mday >= 1 && mday <= 31) ? BIN2BCD(mday) : 0xff;

	hrs = t->time.tm_hour;
	hrs = (hrs < 24) ? BIN2BCD(hrs) : 0xff;

	min = t->time.tm_min;
	min = (min < 60) ? BIN2BCD(min) : 0xff;

	sec = t->time.tm_sec;
	sec = (sec < 60) ? BIN2BCD(sec) : 0xff;

	spin_lock_irq(&rtc_lock);

	/* next rtc irq must not be from previous alarm setting */
	cmos_irq_disable(cmos, RTC_AIE);

	/* update alarm */
	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
	CMOS_WRITE(min, RTC_MINUTES_ALARM);
	CMOS_WRITE(sec, RTC_SECONDS_ALARM);

	/* the system may support an "enhanced" alarm */
	if (cmos->day_alrm) {
		CMOS_WRITE(mday, cmos->day_alrm);
		if (cmos->mon_alrm)
			CMOS_WRITE(mon, cmos->mon_alrm);
	}

	/* FIXME the HPET alarm glue currently ignores day_alrm
	 * and mon_alrm ...
	 */
	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);

	if (t->enabled)
		cmos_irq_enable(cmos, RTC_AIE);

	spin_unlock_irq(&rtc_lock);

	return 0;
}

static int cmos_irq_set_freq(struct device *dev, int freq)
{
	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
	int		f;
	unsigned long	flags;

	if (!is_valid_irq(cmos->irq))
		return -ENXIO;

	/* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */
	f = ffs(freq);
	if (f-- > 16)
		return -EINVAL;
	f = 16 - f;

	spin_lock_irqsave(&rtc_lock, flags);
	hpet_set_periodic_freq(freq);
	CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT);
	spin_unlock_irqrestore(&rtc_lock, flags);

	return 0;
}

static int cmos_irq_set_state(struct device *dev, int enabled)
{
	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
	unsigned long	flags;

	if (!is_valid_irq(cmos->irq))
		return -ENXIO;

	spin_lock_irqsave(&rtc_lock, flags);

	if (enabled)
		cmos_irq_enable(cmos, RTC_PIE);
	else
		cmos_irq_disable(cmos, RTC_PIE);

	spin_unlock_irqrestore(&rtc_lock, flags);
	return 0;
}

#if defined(CONFIG_RTC_INTF_DEV) || defined(CONFIG_RTC_INTF_DEV_MODULE)

static int
cmos_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
{
	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
	unsigned long	flags;

	switch (cmd) {
	case RTC_AIE_OFF:
	case RTC_AIE_ON:
	case RTC_UIE_OFF:
	case RTC_UIE_ON:
		if (!is_valid_irq(cmos->irq))
			return -EINVAL;
		break;
	/* PIE ON/OFF is handled by cmos_irq_set_state() */
	default:
		return -ENOIOCTLCMD;
	}

	spin_lock_irqsave(&rtc_lock, flags);
	switch (cmd) {
	case RTC_AIE_OFF:	/* alarm off */
		cmos_irq_disable(cmos, RTC_AIE);
		break;
	case RTC_AIE_ON:	/* alarm on */
		cmos_irq_enable(cmos, RTC_AIE);
		break;
	case RTC_UIE_OFF:	/* update off */
		cmos_irq_disable(cmos, RTC_UIE);
		break;
	case RTC_UIE_ON:	/* update on */
		cmos_irq_enable(cmos, RTC_UIE);
		break;
	}
	spin_unlock_irqrestore(&rtc_lock, flags);
	return 0;
}

#else
#define	cmos_rtc_ioctl	NULL
#endif

#if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)

static int cmos_procfs(struct device *dev, struct seq_file *seq)
{
	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
	unsigned char	rtc_control, valid;

	spin_lock_irq(&rtc_lock);
	rtc_control = CMOS_READ(RTC_CONTROL);
	valid = CMOS_READ(RTC_VALID);
	spin_unlock_irq(&rtc_lock);

	/* NOTE:  at least ICH6 reports battery status using a different
	 * (non-RTC) bit; and SQWE is ignored on many current systems.
	 */
	return seq_printf(seq,
			"periodic_IRQ\t: %s\n"
			"update_IRQ\t: %s\n"
			"HPET_emulated\t: %s\n"
			// "square_wave\t: %s\n"
			// "BCD\t\t: %s\n"
			"DST_enable\t: %s\n"
			"periodic_freq\t: %d\n"
			"batt_status\t: %s\n",
			(rtc_control & RTC_PIE) ? "yes" : "no",
			(rtc_control & RTC_UIE) ? "yes" : "no",
			is_hpet_enabled() ? "yes" : "no",
			// (rtc_control & RTC_SQWE) ? "yes" : "no",
			// (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
			(rtc_control & RTC_DST_EN) ? "yes" : "no",
			cmos->rtc->irq_freq,
			(valid & RTC_VRT) ? "okay" : "dead");
}

#else
#define	cmos_procfs	NULL
#endif

static const struct rtc_class_ops cmos_rtc_ops = {
	.ioctl		= cmos_rtc_ioctl,
	.read_time	= cmos_read_time,
	.set_time	= cmos_set_time,
	.read_alarm	= cmos_read_alarm,
	.set_alarm	= cmos_set_alarm,
	.proc		= cmos_procfs,
	.irq_set_freq	= cmos_irq_set_freq,
	.irq_set_state	= cmos_irq_set_state,
};

/*----------------------------------------------------------------*/

/*
 * All these chips have at least 64 bytes of address space, shared by
 * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
 * by boot firmware.  Modern chips have 128 or 256 bytes.
 */

#define NVRAM_OFFSET	(RTC_REG_D + 1)

static ssize_t
cmos_nvram_read(struct kobject *kobj, struct bin_attribute *attr,
		char *buf, loff_t off, size_t count)
{
	int	retval;

	if (unlikely(off >= attr->size))
		return 0;
	if ((off + count) > attr->size)
		count = attr->size - off;

	spin_lock_irq(&rtc_lock);
	for (retval = 0, off += NVRAM_OFFSET; count--; retval++, off++)
		*buf++ = CMOS_READ(off);
	spin_unlock_irq(&rtc_lock);

	return retval;
}

static ssize_t
cmos_nvram_write(struct kobject *kobj, struct bin_attribute *attr,
		char *buf, loff_t off, size_t count)
{
	struct cmos_rtc	*cmos;
	int		retval;

	cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
	if (unlikely(off >= attr->size))
		return -EFBIG;
	if ((off + count) > attr->size)
		count = attr->size - off;

	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
	 * checksum on part of the NVRAM data.  That's currently ignored
	 * here.  If userspace is smart enough to know what fields of
	 * NVRAM to update, updating checksums is also part of its job.
	 */
	spin_lock_irq(&rtc_lock);
	for (retval = 0, off += NVRAM_OFFSET; count--; retval++, off++) {
		/* don't trash RTC registers */
		if (off == cmos->day_alrm
				|| off == cmos->mon_alrm
				|| off == cmos->century)
			buf++;
		else
			CMOS_WRITE(*buf++, off);
	}
	spin_unlock_irq(&rtc_lock);

	return retval;
}

static struct bin_attribute nvram = {
	.attr = {
		.name	= "nvram",
		.mode	= S_IRUGO | S_IWUSR,
		.owner	= THIS_MODULE,
	},

	.read	= cmos_nvram_read,
	.write	= cmos_nvram_write,
	/* size gets set up later */
};

/*----------------------------------------------------------------*/

static struct cmos_rtc	cmos_rtc;

static irqreturn_t cmos_interrupt(int irq, void *p)
{
	u8		irqstat;
	u8		rtc_control;

	spin_lock(&rtc_lock);

	/* When the HPET interrupt handler calls us, the interrupt
	 * status is passed as arg1 instead of the irq number.  But
	 * always clear irq status, even when HPET is in the way.
	 *
	 * Note that HPET and RTC are almost certainly out of phase,
	 * giving different IRQ status ...
	 */
	irqstat = CMOS_READ(RTC_INTR_FLAGS);
	rtc_control = CMOS_READ(RTC_CONTROL);
	if (is_hpet_enabled())
		irqstat = (unsigned long)irq & 0xF0;
	irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;

	/* All Linux RTC alarms should be treated as if they were oneshot.
	 * Similar code may be needed in system wakeup paths, in case the
	 * alarm woke the system.
	 */
	if (irqstat & RTC_AIE) {
		rtc_control &= ~RTC_AIE;
		CMOS_WRITE(rtc_control, RTC_CONTROL);
		hpet_mask_rtc_irq_bit(RTC_AIE);

		CMOS_READ(RTC_INTR_FLAGS);
	}
	spin_unlock(&rtc_lock);

	if (is_intr(irqstat)) {
		rtc_update_irq(p, 1, irqstat);
		return IRQ_HANDLED;
	} else
		return IRQ_NONE;
}

#ifdef	CONFIG_PNP
#define	INITSECTION

#else
#define	INITSECTION	__init
#endif

static int INITSECTION
cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
{
	struct cmos_rtc_board_info	*info = dev->platform_data;
	int				retval = 0;
	unsigned char			rtc_control;
	unsigned			address_space;

	/* there can be only one ... */
	if (cmos_rtc.dev)
		return -EBUSY;

	if (!ports)
		return -ENODEV;

	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
	 *
	 * REVISIT non-x86 systems may instead use memory space resources
	 * (needing ioremap etc), not i/o space resources like this ...
	 */
	ports = request_region(ports->start,
			ports->end + 1 - ports->start,
			driver_name);
	if (!ports) {
		dev_dbg(dev, "i/o registers already in use\n");
		return -EBUSY;
	}

	cmos_rtc.irq = rtc_irq;
	cmos_rtc.iomem = ports;

	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
	 * driver did, but don't reject unknown configs.   Old hardware
	 * won't address 128 bytes, and for now we ignore the way newer
	 * chips can address 256 bytes (using two more i/o ports).
	 */
#if	defined(CONFIG_ATARI)
	address_space = 64;
#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__)
	address_space = 128;
#else
#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
	address_space = 128;
#endif

	/* For ACPI systems extension info comes from the FADT.  On others,
	 * board specific setup provides it as appropriate.  Systems where
	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
	 * some almost-clones) can provide hooks to make that behave.
	 *
	 * Note that ACPI doesn't preclude putting these registers into
	 * "extended" areas of the chip, including some that we won't yet
	 * expect CMOS_READ and friends to handle.
	 */
	if (info) {
		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
			cmos_rtc.day_alrm = info->rtc_day_alarm;
		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
		if (info->rtc_century && info->rtc_century < 128)
			cmos_rtc.century = info->rtc_century;

		if (info->wake_on && info->wake_off) {
			cmos_rtc.wake_on = info->wake_on;
			cmos_rtc.wake_off = info->wake_off;
		}
	}

	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
				&cmos_rtc_ops, THIS_MODULE);
	if (IS_ERR(cmos_rtc.rtc)) {
		retval = PTR_ERR(cmos_rtc.rtc);
		goto cleanup0;
	}

	cmos_rtc.dev = dev;
	dev_set_drvdata(dev, &cmos_rtc);
	rename_region(ports, cmos_rtc.rtc->dev.bus_id);

	spin_lock_irq(&rtc_lock);

	/* force periodic irq to CMOS reset default of 1024Hz;
	 *
	 * REVISIT it's been reported that at least one x86_64 ALI mobo
	 * doesn't use 32KHz here ... for portability we might need to
	 * do something about other clock frequencies.
	 */
	cmos_rtc.rtc->irq_freq = 1024;
	hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
	CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);

	/* disable irqs */
	cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);

	rtc_control = CMOS_READ(RTC_CONTROL);

	spin_unlock_irq(&rtc_lock);

	/* FIXME teach the alarm code how to handle binary mode;
	 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
	 */
	if (!(rtc_control & RTC_24H) || (rtc_control & (RTC_DM_BINARY))) {
		dev_dbg(dev, "only 24-hr BCD mode supported\n");
		retval = -ENXIO;
		goto cleanup1;
	}

	if (is_valid_irq(rtc_irq)) {
		irq_handler_t rtc_cmos_int_handler;

		if (is_hpet_enabled()) {
			int err;

			rtc_cmos_int_handler = hpet_rtc_interrupt;
			err = hpet_register_irq_handler(cmos_interrupt);
			if (err != 0) {
				printk(KERN_WARNING "hpet_register_irq_handler "
						" failed in rtc_init().");
				goto cleanup1;
			}
		} else
			rtc_cmos_int_handler = cmos_interrupt;

		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
				IRQF_DISABLED, cmos_rtc.rtc->dev.bus_id,
				cmos_rtc.rtc);
		if (retval < 0) {
			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
			goto cleanup1;
		}
	}
	hpet_rtc_timer_init();

	/* export at least the first block of NVRAM */
	nvram.size = address_space - NVRAM_OFFSET;
	retval = sysfs_create_bin_file(&dev->kobj, &nvram);
	if (retval < 0) {
		dev_dbg(dev, "can't create nvram file? %d\n", retval);
		goto cleanup2;
	}

	pr_info("%s: alarms up to one %s%s%s\n",
			cmos_rtc.rtc->dev.bus_id,
			is_valid_irq(rtc_irq)
				?  (cmos_rtc.mon_alrm
					? "year"
					: (cmos_rtc.day_alrm
						? "month" : "day"))
				: "no",
			cmos_rtc.century ? ", y3k" : "",
			is_hpet_enabled() ? ", hpet irqs" : "");

	return 0;

cleanup2:
	if (is_valid_irq(rtc_irq))
		free_irq(rtc_irq, cmos_rtc.rtc);
cleanup1:
	cmos_rtc.dev = NULL;
	rtc_device_unregister(cmos_rtc.rtc);
cleanup0:
	release_region(ports->start, ports->end + 1 - ports->start);
	return retval;
}

static void cmos_do_shutdown(void)
{
	spin_lock_irq(&rtc_lock);
	cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
	spin_unlock_irq(&rtc_lock);
}

static void __exit cmos_do_remove(struct device *dev)
{
	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
	struct resource *ports;

	cmos_do_shutdown();

	sysfs_remove_bin_file(&dev->kobj, &nvram);

	if (is_valid_irq(cmos->irq)) {
		free_irq(cmos->irq, cmos->rtc);
		hpet_unregister_irq_handler(cmos_interrupt);
	}

	rtc_device_unregister(cmos->rtc);
	cmos->rtc = NULL;

	ports = cmos->iomem;
	release_region(ports->start, ports->end + 1 - ports->start);
	cmos->iomem = NULL;

	cmos->dev = NULL;
	dev_set_drvdata(dev, NULL);
}

#ifdef	CONFIG_PM

static int cmos_suspend(struct device *dev, pm_message_t mesg)
{
	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
	unsigned char	tmp;

	/* only the alarm might be a wakeup event source */
	spin_lock_irq(&rtc_lock);
	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
		unsigned char	mask;

		if (device_may_wakeup(dev))
			mask = RTC_IRQMASK & ~RTC_AIE;
		else
			mask = RTC_IRQMASK;
		tmp &= ~mask;
		CMOS_WRITE(tmp, RTC_CONTROL);
		hpet_mask_rtc_irq_bit(mask);

		cmos_checkintr(cmos, tmp);
	}
	spin_unlock_irq(&rtc_lock);

	if (tmp & RTC_AIE) {
		cmos->enabled_wake = 1;
		if (cmos->wake_on)
			cmos->wake_on(dev);
		else
			enable_irq_wake(cmos->irq);
	}

	pr_debug("%s: suspend%s, ctrl %02x\n",
			cmos_rtc.rtc->dev.bus_id,
			(tmp & RTC_AIE) ? ", alarm may wake" : "",
			tmp);

	return 0;
}

/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
 * after a detour through G3 "mechanical off", although the ACPI spec
 * says wakeup should only work from G1/S4 "hibernate".  To most users,
 * distinctions between S4 and S5 are pointless.  So when the hardware
 * allows, don't draw that distinction.
 */
static inline int cmos_poweroff(struct device *dev)
{
	return cmos_suspend(dev, PMSG_HIBERNATE);
}

static int cmos_resume(struct device *dev)
{
	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
	unsigned char	tmp = cmos->suspend_ctrl;

	/* re-enable any irqs previously active */
	if (tmp & RTC_IRQMASK) {
		unsigned char	mask;

		if (cmos->enabled_wake) {
			if (cmos->wake_off)
				cmos->wake_off(dev);
			else
				disable_irq_wake(cmos->irq);
			cmos->enabled_wake = 0;
		}

		spin_lock_irq(&rtc_lock);
		do {
			CMOS_WRITE(tmp, RTC_CONTROL);
			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);

			mask = CMOS_READ(RTC_INTR_FLAGS);
			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
			if (!is_hpet_enabled() || !is_intr(mask))
				break;

			/* force one-shot behavior if HPET blocked
			 * the wake alarm's irq
			 */
			rtc_update_irq(cmos->rtc, 1, mask);
			tmp &= ~RTC_AIE;
			hpet_mask_rtc_irq_bit(RTC_AIE);
		} while (mask & RTC_AIE);
		spin_unlock_irq(&rtc_lock);
	}

	pr_debug("%s: resume, ctrl %02x\n",
			cmos_rtc.rtc->dev.bus_id,
			tmp);

	return 0;
}

#else
#define	cmos_suspend	NULL
#define	cmos_resume	NULL

static inline int cmos_poweroff(struct device *dev)
{
	return -ENOSYS;
}

#endif

/*----------------------------------------------------------------*/

/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
 * probably list them in similar PNPBIOS tables; so PNP is more common.
 *
 * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
 * predate even PNPBIOS should set up platform_bus devices.
 */

#ifdef	CONFIG_PNP

#include <linux/pnp.h>

static int __devinit
cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
{
	if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
		/* Some machines contain a PNP entry for the RTC, but
		 * don't define the IRQ. It should always be safe to
		 * hardcode it in these cases
		 */
		return cmos_do_probe(&pnp->dev,
				pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
	else
		return cmos_do_probe(&pnp->dev,
				pnp_get_resource(pnp, IORESOURCE_IO, 0),
				pnp_irq(pnp, 0));
}

static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
{
	cmos_do_remove(&pnp->dev);
}

#ifdef	CONFIG_PM

static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
{
	return cmos_suspend(&pnp->dev, mesg);
}

static int cmos_pnp_resume(struct pnp_dev *pnp)
{
	return cmos_resume(&pnp->dev);
}

#else
#define	cmos_pnp_suspend	NULL
#define	cmos_pnp_resume		NULL
#endif

static void cmos_pnp_shutdown(struct device *pdev)
{
	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(pdev))
		return;

	cmos_do_shutdown();
}

static const struct pnp_device_id rtc_ids[] = {
	{ .id = "PNP0b00", },
	{ .id = "PNP0b01", },
	{ .id = "PNP0b02", },
	{ },
};
MODULE_DEVICE_TABLE(pnp, rtc_ids);

static struct pnp_driver cmos_pnp_driver = {
	.name		= (char *) driver_name,
	.id_table	= rtc_ids,
	.probe		= cmos_pnp_probe,
	.remove		= __exit_p(cmos_pnp_remove),

	/* flag ensures resume() gets called, and stops syslog spam */
	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
	.suspend	= cmos_pnp_suspend,
	.resume		= cmos_pnp_resume,
	.driver		= {
		.name	  = (char *)driver_name,
		.shutdown = cmos_pnp_shutdown,
	}
};

#endif	/* CONFIG_PNP */

/*----------------------------------------------------------------*/

/* Platform setup should have set up an RTC device, when PNP is
 * unavailable ... this could happen even on (older) PCs.
 */

static int __init cmos_platform_probe(struct platform_device *pdev)
{
	return cmos_do_probe(&pdev->dev,
			platform_get_resource(pdev, IORESOURCE_IO, 0),
			platform_get_irq(pdev, 0));
}

static int __exit cmos_platform_remove(struct platform_device *pdev)
{
	cmos_do_remove(&pdev->dev);
	return 0;
}

static void cmos_platform_shutdown(struct platform_device *pdev)
{
	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
		return;

	cmos_do_shutdown();
}

/* work with hotplug and coldplug */
MODULE_ALIAS("platform:rtc_cmos");

static struct platform_driver cmos_platform_driver = {
	.remove		= __exit_p(cmos_platform_remove),
	.shutdown	= cmos_platform_shutdown,
	.driver = {
		.name		= (char *) driver_name,
		.suspend	= cmos_suspend,
		.resume		= cmos_resume,
	}
};

static int __init cmos_init(void)
{
#ifdef	CONFIG_PNP
	if (pnp_platform_devices)
		return pnp_register_driver(&cmos_pnp_driver);
	else
		return platform_driver_probe(&cmos_platform_driver,
			cmos_platform_probe);
#else
	return platform_driver_probe(&cmos_platform_driver,
			cmos_platform_probe);
#endif /* CONFIG_PNP */
}
module_init(cmos_init);

static void __exit cmos_exit(void)
{
#ifdef	CONFIG_PNP
	if (pnp_platform_devices)
		pnp_unregister_driver(&cmos_pnp_driver);
	else
		platform_driver_unregister(&cmos_platform_driver);
#else
	platform_driver_unregister(&cmos_platform_driver);
#endif /* CONFIG_PNP */
}
module_exit(cmos_exit);


MODULE_AUTHOR("David Brownell");
MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
MODULE_LICENSE("GPL");