clk-cdce925.c 18.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
/*
 * Driver for TI Dual PLL CDCE925 clock synthesizer
 *
 * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1
 * and Y4/Y5 to PLL2. PLL frequency is set on a first-come-first-serve
 * basis. Clients can directly request any frequency that the chip can
 * deliver using the standard clk framework. In addition, the device can
 * be configured and activated via the devicetree.
 *
 * Copyright (C) 2014, Topic Embedded Products
 * Licenced under GPL
 */
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/gcd.h>

/* The chip has 2 PLLs which can be routed through dividers to 5 outputs.
 * Model this as 2 PLL clocks which are parents to the outputs.
 */
#define NUMBER_OF_PLLS	2
#define NUMBER_OF_OUTPUTS	5

#define CDCE925_REG_GLOBAL1	0x01
#define CDCE925_REG_Y1SPIPDIVH	0x02
#define CDCE925_REG_PDIVL	0x03
#define CDCE925_REG_XCSEL	0x05
/* PLL parameters start at 0x10, steps of 0x10 */
#define CDCE925_OFFSET_PLL	0x10
/* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
#define CDCE925_PLL_MUX_OUTPUTS	0x14
#define CDCE925_PLL_MULDIV	0x18

#define CDCE925_PLL_FREQUENCY_MIN	 80000000ul
#define CDCE925_PLL_FREQUENCY_MAX	230000000ul
struct clk_cdce925_chip;

struct clk_cdce925_output {
	struct clk_hw hw;
	struct clk_cdce925_chip *chip;
	u8 index;
	u16 pdiv; /* 1..127 for Y2-Y5; 1..1023 for Y1 */
};
#define to_clk_cdce925_output(_hw) \
	container_of(_hw, struct clk_cdce925_output, hw)

struct clk_cdce925_pll {
	struct clk_hw hw;
	struct clk_cdce925_chip *chip;
	u8 index;
	u16 m;   /* 1..511 */
	u16 n;   /* 1..4095 */
};
#define to_clk_cdce925_pll(_hw)	container_of(_hw, struct clk_cdce925_pll, hw)

struct clk_cdce925_chip {
	struct regmap *regmap;
	struct i2c_client *i2c_client;
	struct clk_cdce925_pll pll[NUMBER_OF_PLLS];
	struct clk_cdce925_output clk[NUMBER_OF_OUTPUTS];
};

/* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */

static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
	u16 n, u16 m)
{
	if ((!m || !n) || (m == n))
		return parent_rate; /* In bypass mode runs at same frequency */
	return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
}

static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
		unsigned long parent_rate)
{
	/* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);

	return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
}

static void cdce925_pll_find_rate(unsigned long rate,
		unsigned long parent_rate, u16 *n, u16 *m)
{
	unsigned long un;
	unsigned long um;
	unsigned long g;

	if (rate <= parent_rate) {
		/* Can always deliver parent_rate in bypass mode */
		rate = parent_rate;
		*n = 0;
		*m = 0;
	} else {
		/* In PLL mode, need to apply min/max range */
		if (rate < CDCE925_PLL_FREQUENCY_MIN)
			rate = CDCE925_PLL_FREQUENCY_MIN;
		else if (rate > CDCE925_PLL_FREQUENCY_MAX)
			rate = CDCE925_PLL_FREQUENCY_MAX;

		g = gcd(rate, parent_rate);
		um = parent_rate / g;
		un = rate / g;
		/* When outside hw range, reduce to fit (rounding errors) */
		while ((un > 4095) || (um > 511)) {
			un >>= 1;
			um >>= 1;
		}
		if (un == 0)
			un = 1;
		if (um == 0)
			um = 1;

		*n = un;
		*m = um;
	}
}

static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
		unsigned long *parent_rate)
{
	u16 n, m;

	cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
	return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
}

static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
		unsigned long parent_rate)
{
	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);

	if (!rate || (rate == parent_rate)) {
		data->m = 0; /* Bypass mode */
		data->n = 0;
		return 0;
	}

	if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
		(rate > CDCE925_PLL_FREQUENCY_MAX)) {
		pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
		return -EINVAL;
	}

	if (rate < parent_rate) {
		pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
			rate, parent_rate);
		return -EINVAL;
	}

	cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
	return 0;
}


/* calculate p = max(0, 4 - int(log2 (n/m))) */
static u8 cdce925_pll_calc_p(u16 n, u16 m)
{
	u8 p;
	u16 r = n / m;

	if (r >= 16)
		return 0;
	p = 4;
	while (r > 1) {
		r >>= 1;
		--p;
	}
	return p;
}

/* Returns VCO range bits for VCO1_0_RANGE */
static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
{
	struct clk *parent = clk_get_parent(hw->clk);
	unsigned long rate = clk_get_rate(parent);

	rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
	if (rate >= 175000000)
		return 0x3;
	if (rate >= 150000000)
		return 0x02;
	if (rate >= 125000000)
		return 0x01;
	return 0x00;
}

/* I2C clock, hence everything must happen in (un)prepare because this
 * may sleep */
static int cdce925_pll_prepare(struct clk_hw *hw)
{
	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
	u16 n = data->n;
	u16 m = data->m;
	u16 r;
	u8 q;
	u8 p;
	u16 nn;
	u8 pll[4]; /* Bits are spread out over 4 byte registers */
	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
	unsigned i;

	if ((!m || !n) || (m == n)) {
		/* Set PLL mux to bypass mode, leave the rest as is */
		regmap_update_bits(data->chip->regmap,
			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
	} else {
		/* According to data sheet: */
		/* p = max(0, 4 - int(log2 (n/m))) */
		p = cdce925_pll_calc_p(n, m);
		/* nn = n * 2^p */
		nn = n * BIT(p);
		/* q = int(nn/m) */
		q = nn / m;
		if ((q < 16) || (1 > 64)) {
			pr_debug("%s invalid q=%d\n", __func__, q);
			return -EINVAL;
		}
		r = nn - (m*q);
		if (r > 511) {
			pr_debug("%s invalid r=%d\n", __func__, r);
			return -EINVAL;
		}
		pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
			n, m, p, q, r);
		/* encode into register bits */
		pll[0] = n >> 4;
		pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
		pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
		pll[3] = ((q & 0x07) << 5) | (p << 2) |
				cdce925_pll_calc_range_bits(hw, n, m);
		/* Write to registers */
		for (i = 0; i < ARRAY_SIZE(pll); ++i)
			regmap_write(data->chip->regmap,
				reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
		/* Enable PLL */
		regmap_update_bits(data->chip->regmap,
			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
	}

	return 0;
}

static void cdce925_pll_unprepare(struct clk_hw *hw)
{
	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;

	regmap_update_bits(data->chip->regmap,
			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
}

static const struct clk_ops cdce925_pll_ops = {
	.prepare = cdce925_pll_prepare,
	.unprepare = cdce925_pll_unprepare,
	.recalc_rate = cdce925_pll_recalc_rate,
	.round_rate = cdce925_pll_round_rate,
	.set_rate = cdce925_pll_set_rate,
};


static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
{
	switch (data->index) {
	case 0:
		regmap_update_bits(data->chip->regmap,
			CDCE925_REG_Y1SPIPDIVH,
			0x03, (pdiv >> 8) & 0x03);
		regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
		break;
	case 1:
		regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
		break;
	case 2:
		regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
		break;
	case 3:
		regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
		break;
	case 4:
		regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
		break;
	}
}

static void cdce925_clk_activate(struct clk_cdce925_output *data)
{
	switch (data->index) {
	case 0:
		regmap_update_bits(data->chip->regmap,
			CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
		break;
	case 1:
	case 2:
		regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
		break;
	case 3:
	case 4:
		regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
		break;
	}
}

static int cdce925_clk_prepare(struct clk_hw *hw)
{
	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);

	cdce925_clk_set_pdiv(data, data->pdiv);
	cdce925_clk_activate(data);
	return 0;
}

static void cdce925_clk_unprepare(struct clk_hw *hw)
{
	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);

	/* Disable clock by setting divider to "0" */
	cdce925_clk_set_pdiv(data, 0);
}

static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
		unsigned long parent_rate)
{
	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);

	if (data->pdiv)
		return parent_rate / data->pdiv;
	return 0;
}

static u16 cdce925_calc_divider(unsigned long rate,
		unsigned long parent_rate)
{
	unsigned long divider;

	if (!rate)
		return 0;
	if (rate >= parent_rate)
		return 1;

	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
	if (divider > 0x7F)
		divider = 0x7F;

	return (u16)divider;
}

static unsigned long cdce925_clk_best_parent_rate(
	struct clk_hw *hw, unsigned long rate)
{
	struct clk *pll = clk_get_parent(hw->clk);
	struct clk *root = clk_get_parent(pll);
	unsigned long root_rate = clk_get_rate(root);
	unsigned long best_rate_error = rate;
	u16 pdiv_min;
	u16 pdiv_max;
	u16 pdiv_best;
	u16 pdiv_now;

	if (root_rate % rate == 0)
		return root_rate; /* Don't need the PLL, use bypass */

	pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
	pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);

	if (pdiv_min > pdiv_max)
		return 0; /* No can do? */

	pdiv_best = pdiv_min;
	for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
		unsigned long target_rate = rate * pdiv_now;
		long pll_rate = clk_round_rate(pll, target_rate);
		unsigned long actual_rate;
		unsigned long rate_error;

		if (pll_rate <= 0)
			continue;
		actual_rate = pll_rate / pdiv_now;
		rate_error = abs((long)actual_rate - (long)rate);
		if (rate_error < best_rate_error) {
			pdiv_best = pdiv_now;
			best_rate_error = rate_error;
		}
		/* TODO: Consider PLL frequency based on smaller n/m values
		 * and pick the better one if the error is equal */
	}

	return rate * pdiv_best;
}

static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
		unsigned long *parent_rate)
{
	unsigned long l_parent_rate = *parent_rate;
	u16 divider = cdce925_calc_divider(rate, l_parent_rate);

	if (l_parent_rate / divider != rate) {
		l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
		divider = cdce925_calc_divider(rate, l_parent_rate);
		*parent_rate = l_parent_rate;
	}

	if (divider)
		return (long)(l_parent_rate / divider);
	return 0;
}

static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
		unsigned long parent_rate)
{
	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);

	data->pdiv = cdce925_calc_divider(rate, parent_rate);

	return 0;
}

static const struct clk_ops cdce925_clk_ops = {
	.prepare = cdce925_clk_prepare,
	.unprepare = cdce925_clk_unprepare,
	.recalc_rate = cdce925_clk_recalc_rate,
	.round_rate = cdce925_clk_round_rate,
	.set_rate = cdce925_clk_set_rate,
};


static u16 cdce925_y1_calc_divider(unsigned long rate,
		unsigned long parent_rate)
{
	unsigned long divider;

	if (!rate)
		return 0;
	if (rate >= parent_rate)
		return 1;

	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
	if (divider > 0x3FF) /* Y1 has 10-bit divider */
		divider = 0x3FF;

	return (u16)divider;
}

static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
		unsigned long *parent_rate)
{
	unsigned long l_parent_rate = *parent_rate;
	u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);

	if (divider)
		return (long)(l_parent_rate / divider);
	return 0;
}

static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
		unsigned long parent_rate)
{
	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);

	data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);

	return 0;
}

static const struct clk_ops cdce925_clk_y1_ops = {
	.prepare = cdce925_clk_prepare,
	.unprepare = cdce925_clk_unprepare,
	.recalc_rate = cdce925_clk_recalc_rate,
	.round_rate = cdce925_clk_y1_round_rate,
	.set_rate = cdce925_clk_y1_set_rate,
};


static struct regmap_config cdce925_regmap_config = {
	.name = "configuration0",
	.reg_bits = 8,
	.val_bits = 8,
	.cache_type = REGCACHE_RBTREE,
	.max_register = 0x2F,
};

#define CDCE925_I2C_COMMAND_BLOCK_TRANSFER	0x00
#define CDCE925_I2C_COMMAND_BYTE_TRANSFER	0x80

static int cdce925_regmap_i2c_write(
	void *context, const void *data, size_t count)
{
	struct device *dev = context;
	struct i2c_client *i2c = to_i2c_client(dev);
	int ret;
	u8 reg_data[2];

	if (count != 2)
		return -ENOTSUPP;

	/* First byte is command code */
	reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
	reg_data[1] = ((u8 *)data)[1];

	dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
			reg_data[0], reg_data[1]);

	ret = i2c_master_send(i2c, reg_data, count);
	if (likely(ret == count))
		return 0;
	else if (ret < 0)
		return ret;
	else
		return -EIO;
}

static int cdce925_regmap_i2c_read(void *context,
	   const void *reg, size_t reg_size, void *val, size_t val_size)
{
	struct device *dev = context;
	struct i2c_client *i2c = to_i2c_client(dev);
	struct i2c_msg xfer[2];
	int ret;
	u8 reg_data[2];

	if (reg_size != 1)
		return -ENOTSUPP;

	xfer[0].addr = i2c->addr;
	xfer[0].flags = 0;
	xfer[0].buf = reg_data;
	if (val_size == 1) {
		reg_data[0] =
			CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
		xfer[0].len = 1;
	} else {
		reg_data[0] =
			CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
		reg_data[1] = val_size;
		xfer[0].len = 2;
	}

	xfer[1].addr = i2c->addr;
	xfer[1].flags = I2C_M_RD;
	xfer[1].len = val_size;
	xfer[1].buf = val;

	ret = i2c_transfer(i2c->adapter, xfer, 2);
	if (likely(ret == 2)) {
		dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
				reg_size, val_size, reg_data[0], *((u8 *)val));
		return 0;
	} else if (ret < 0)
		return ret;
	else
		return -EIO;
}

static struct clk_hw *
of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data)
{
	struct clk_cdce925_chip *data = _data;
	unsigned int idx = clkspec->args[0];

	if (idx >= ARRAY_SIZE(data->clk)) {
		pr_err("%s: invalid index %u\n", __func__, idx);
		return ERR_PTR(-EINVAL);
	}

	return &data->clk[idx].hw;
}

/* The CDCE925 uses a funky way to read/write registers. Bulk mode is
 * just weird, so just use the single byte mode exclusively. */
static struct regmap_bus regmap_cdce925_bus = {
	.write = cdce925_regmap_i2c_write,
	.read = cdce925_regmap_i2c_read,
};

static int cdce925_probe(struct i2c_client *client,
		const struct i2c_device_id *id)
{
	struct clk_cdce925_chip *data;
	struct device_node *node = client->dev.of_node;
	const char *parent_name;
	const char *pll_clk_name[NUMBER_OF_PLLS] = {NULL,};
	struct clk_init_data init;
	u32 value;
	int i;
	int err;
	struct device_node *np_output;
	char child_name[6];

	dev_dbg(&client->dev, "%s\n", __func__);
	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	data->i2c_client = client;
	data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
			&client->dev, &cdce925_regmap_config);
	if (IS_ERR(data->regmap)) {
		dev_err(&client->dev, "failed to allocate register map\n");
		return PTR_ERR(data->regmap);
	}
	i2c_set_clientdata(client, data);

	parent_name = of_clk_get_parent_name(node, 0);
	if (!parent_name) {
		dev_err(&client->dev, "missing parent clock\n");
		return -ENODEV;
	}
	dev_dbg(&client->dev, "parent is: %s\n", parent_name);

	if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
		regmap_write(data->regmap,
			CDCE925_REG_XCSEL, (value << 3) & 0xF8);
	/* PWDN bit */
	regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);

	/* Set input source for Y1 to be the XTAL */
	regmap_update_bits(data->regmap, 0x02, BIT(7), 0);

	init.ops = &cdce925_pll_ops;
	init.flags = 0;
	init.parent_names = &parent_name;
	init.num_parents = parent_name ? 1 : 0;

	/* Register PLL clocks */
	for (i = 0; i < NUMBER_OF_PLLS; ++i) {
		pll_clk_name[i] = kasprintf(GFP_KERNEL, "%s.pll%d",
			client->dev.of_node->name, i);
		init.name = pll_clk_name[i];
		data->pll[i].chip = data;
		data->pll[i].hw.init = &init;
		data->pll[i].index = i;
		err = devm_clk_hw_register(&client->dev, &data->pll[i].hw);
		if (err) {
			dev_err(&client->dev, "Failed register PLL %d\n", i);
			goto error;
		}
		sprintf(child_name, "PLL%d", i+1);
		np_output = of_get_child_by_name(node, child_name);
		if (!np_output)
			continue;
		if (!of_property_read_u32(np_output,
			"clock-frequency", &value)) {
			err = clk_set_rate(data->pll[i].hw.clk, value);
			if (err)
				dev_err(&client->dev,
					"unable to set PLL frequency %ud\n",
					value);
		}
		if (!of_property_read_u32(np_output,
			"spread-spectrum", &value)) {
			u8 flag = of_property_read_bool(np_output,
				"spread-spectrum-center") ? 0x80 : 0x00;
			regmap_update_bits(data->regmap,
				0x16 + (i*CDCE925_OFFSET_PLL),
				0x80, flag);
			regmap_update_bits(data->regmap,
				0x12 + (i*CDCE925_OFFSET_PLL),
				0x07, value & 0x07);
		}
	}

	/* Register output clock Y1 */
	init.ops = &cdce925_clk_y1_ops;
	init.flags = 0;
	init.num_parents = 1;
	init.parent_names = &parent_name; /* Mux Y1 to input */
	init.name = kasprintf(GFP_KERNEL, "%s.Y1", client->dev.of_node->name);
	data->clk[0].chip = data;
	data->clk[0].hw.init = &init;
	data->clk[0].index = 0;
	data->clk[0].pdiv = 1;
	err = devm_clk_hw_register(&client->dev, &data->clk[0].hw);
	kfree(init.name); /* clock framework made a copy of the name */
	if (err) {
		dev_err(&client->dev, "clock registration Y1 failed\n");
		goto error;
	}

	/* Register output clocks Y2 .. Y5*/
	init.ops = &cdce925_clk_ops;
	init.flags = CLK_SET_RATE_PARENT;
	init.num_parents = 1;
	for (i = 1; i < NUMBER_OF_OUTPUTS; ++i) {
		init.name = kasprintf(GFP_KERNEL, "%s.Y%d",
			client->dev.of_node->name, i+1);
		data->clk[i].chip = data;
		data->clk[i].hw.init = &init;
		data->clk[i].index = i;
		data->clk[i].pdiv = 1;
		switch (i) {
		case 1:
		case 2:
			/* Mux Y2/3 to PLL1 */
			init.parent_names = &pll_clk_name[0];
			break;
		case 3:
		case 4:
			/* Mux Y4/5 to PLL2 */
			init.parent_names = &pll_clk_name[1];
			break;
		}
		err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
		kfree(init.name); /* clock framework made a copy of the name */
		if (err) {
			dev_err(&client->dev, "clock registration failed\n");
			goto error;
		}
	}

	/* Register the output clocks */
	err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get,
				  data);
	if (err)
		dev_err(&client->dev, "unable to add OF clock provider\n");

	err = 0;

error:
	for (i = 0; i < NUMBER_OF_PLLS; ++i)
		/* clock framework made a copy of the name */
		kfree(pll_clk_name[i]);

	return err;
}

static const struct i2c_device_id cdce925_id[] = {
	{ "cdce925", 0 },
	{ }
};
MODULE_DEVICE_TABLE(i2c, cdce925_id);

static const struct of_device_id clk_cdce925_of_match[] = {
	{ .compatible = "ti,cdce925" },
	{ },
};
MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);

static struct i2c_driver cdce925_driver = {
	.driver = {
		.name = "cdce925",
		.of_match_table = of_match_ptr(clk_cdce925_of_match),
	},
	.probe		= cdce925_probe,
	.id_table	= cdce925_id,
};
module_i2c_driver(cdce925_driver);

MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
MODULE_DESCRIPTION("cdce925 driver");
MODULE_LICENSE("GPL");