cadence_ttc_timer.c 14.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
/*
 * This file contains driver for the Cadence Triple Timer Counter Rev 06
 *
 *  Copyright (C) 2011-2013 Xilinx
 *
 * based on arch/mips/kernel/time.c timer driver
 *
 * This software is licensed under the terms of the GNU General Public
 * License version 2, as published by the Free Software Foundation, and
 * may be copied, distributed, and modified under those terms.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/clockchips.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/slab.h>
#include <linux/sched_clock.h>

/*
 * This driver configures the 2 16/32-bit count-up timers as follows:
 *
 * T1: Timer 1, clocksource for generic timekeeping
 * T2: Timer 2, clockevent source for hrtimers
 * T3: Timer 3, <unused>
 *
 * The input frequency to the timer module for emulation is 2.5MHz which is
 * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32,
 * the timers are clocked at 78.125KHz (12.8 us resolution).

 * The input frequency to the timer module in silicon is configurable and
 * obtained from device tree. The pre-scaler of 32 is used.
 */

/*
 * Timer Register Offset Definitions of Timer 1, Increment base address by 4
 * and use same offsets for Timer 2
 */
#define TTC_CLK_CNTRL_OFFSET		0x00 /* Clock Control Reg, RW */
#define TTC_CNT_CNTRL_OFFSET		0x0C /* Counter Control Reg, RW */
#define TTC_COUNT_VAL_OFFSET		0x18 /* Counter Value Reg, RO */
#define TTC_INTR_VAL_OFFSET		0x24 /* Interval Count Reg, RW */
#define TTC_ISR_OFFSET		0x54 /* Interrupt Status Reg, RO */
#define TTC_IER_OFFSET		0x60 /* Interrupt Enable Reg, RW */

#define TTC_CNT_CNTRL_DISABLE_MASK	0x1

#define TTC_CLK_CNTRL_CSRC_MASK		(1 << 5)	/* clock source */
#define TTC_CLK_CNTRL_PSV_MASK		0x1e
#define TTC_CLK_CNTRL_PSV_SHIFT		1

/*
 * Setup the timers to use pre-scaling, using a fixed value for now that will
 * work across most input frequency, but it may need to be more dynamic
 */
#define PRESCALE_EXPONENT	11	/* 2 ^ PRESCALE_EXPONENT = PRESCALE */
#define PRESCALE		2048	/* The exponent must match this */
#define CLK_CNTRL_PRESCALE	((PRESCALE_EXPONENT - 1) << 1)
#define CLK_CNTRL_PRESCALE_EN	1
#define CNT_CNTRL_RESET		(1 << 4)

#define MAX_F_ERR 50

/**
 * struct ttc_timer - This definition defines local timer structure
 *
 * @base_addr:	Base address of timer
 * @freq:	Timer input clock frequency
 * @clk:	Associated clock source
 * @clk_rate_change_nb	Notifier block for clock rate changes
 */
struct ttc_timer {
	void __iomem *base_addr;
	unsigned long freq;
	struct clk *clk;
	struct notifier_block clk_rate_change_nb;
};

#define to_ttc_timer(x) \
		container_of(x, struct ttc_timer, clk_rate_change_nb)

struct ttc_timer_clocksource {
	u32			scale_clk_ctrl_reg_old;
	u32			scale_clk_ctrl_reg_new;
	struct ttc_timer	ttc;
	struct clocksource	cs;
};

#define to_ttc_timer_clksrc(x) \
		container_of(x, struct ttc_timer_clocksource, cs)

struct ttc_timer_clockevent {
	struct ttc_timer		ttc;
	struct clock_event_device	ce;
};

#define to_ttc_timer_clkevent(x) \
		container_of(x, struct ttc_timer_clockevent, ce)

static void __iomem *ttc_sched_clock_val_reg;

/**
 * ttc_set_interval - Set the timer interval value
 *
 * @timer:	Pointer to the timer instance
 * @cycles:	Timer interval ticks
 **/
static void ttc_set_interval(struct ttc_timer *timer,
					unsigned long cycles)
{
	u32 ctrl_reg;

	/* Disable the counter, set the counter value  and re-enable counter */
	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);

	writel_relaxed(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET);

	/*
	 * Reset the counter (0x10) so that it starts from 0, one-shot
	 * mode makes this needed for timing to be right.
	 */
	ctrl_reg |= CNT_CNTRL_RESET;
	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
}

/**
 * ttc_clock_event_interrupt - Clock event timer interrupt handler
 *
 * @irq:	IRQ number of the Timer
 * @dev_id:	void pointer to the ttc_timer instance
 *
 * returns: Always IRQ_HANDLED - success
 **/
static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id)
{
	struct ttc_timer_clockevent *ttce = dev_id;
	struct ttc_timer *timer = &ttce->ttc;

	/* Acknowledge the interrupt and call event handler */
	readl_relaxed(timer->base_addr + TTC_ISR_OFFSET);

	ttce->ce.event_handler(&ttce->ce);

	return IRQ_HANDLED;
}

/**
 * __ttc_clocksource_read - Reads the timer counter register
 *
 * returns: Current timer counter register value
 **/
static cycle_t __ttc_clocksource_read(struct clocksource *cs)
{
	struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc;

	return (cycle_t)readl_relaxed(timer->base_addr +
				TTC_COUNT_VAL_OFFSET);
}

static u64 notrace ttc_sched_clock_read(void)
{
	return readl_relaxed(ttc_sched_clock_val_reg);
}

/**
 * ttc_set_next_event - Sets the time interval for next event
 *
 * @cycles:	Timer interval ticks
 * @evt:	Address of clock event instance
 *
 * returns: Always 0 - success
 **/
static int ttc_set_next_event(unsigned long cycles,
					struct clock_event_device *evt)
{
	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
	struct ttc_timer *timer = &ttce->ttc;

	ttc_set_interval(timer, cycles);
	return 0;
}

/**
 * ttc_set_{shutdown|oneshot|periodic} - Sets the state of timer
 *
 * @evt:	Address of clock event instance
 **/
static int ttc_shutdown(struct clock_event_device *evt)
{
	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
	struct ttc_timer *timer = &ttce->ttc;
	u32 ctrl_reg;

	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
	return 0;
}

static int ttc_set_periodic(struct clock_event_device *evt)
{
	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
	struct ttc_timer *timer = &ttce->ttc;

	ttc_set_interval(timer,
			 DIV_ROUND_CLOSEST(ttce->ttc.freq, PRESCALE * HZ));
	return 0;
}

static int ttc_resume(struct clock_event_device *evt)
{
	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
	struct ttc_timer *timer = &ttce->ttc;
	u32 ctrl_reg;

	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
	return 0;
}

static int ttc_rate_change_clocksource_cb(struct notifier_block *nb,
		unsigned long event, void *data)
{
	struct clk_notifier_data *ndata = data;
	struct ttc_timer *ttc = to_ttc_timer(nb);
	struct ttc_timer_clocksource *ttccs = container_of(ttc,
			struct ttc_timer_clocksource, ttc);

	switch (event) {
	case PRE_RATE_CHANGE:
	{
		u32 psv;
		unsigned long factor, rate_low, rate_high;

		if (ndata->new_rate > ndata->old_rate) {
			factor = DIV_ROUND_CLOSEST(ndata->new_rate,
					ndata->old_rate);
			rate_low = ndata->old_rate;
			rate_high = ndata->new_rate;
		} else {
			factor = DIV_ROUND_CLOSEST(ndata->old_rate,
					ndata->new_rate);
			rate_low = ndata->new_rate;
			rate_high = ndata->old_rate;
		}

		if (!is_power_of_2(factor))
				return NOTIFY_BAD;

		if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR)
			return NOTIFY_BAD;

		factor = __ilog2_u32(factor);

		/*
		 * store timer clock ctrl register so we can restore it in case
		 * of an abort.
		 */
		ttccs->scale_clk_ctrl_reg_old =
			readl_relaxed(ttccs->ttc.base_addr +
			TTC_CLK_CNTRL_OFFSET);

		psv = (ttccs->scale_clk_ctrl_reg_old &
				TTC_CLK_CNTRL_PSV_MASK) >>
				TTC_CLK_CNTRL_PSV_SHIFT;
		if (ndata->new_rate < ndata->old_rate)
			psv -= factor;
		else
			psv += factor;

		/* prescaler within legal range? */
		if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT))
			return NOTIFY_BAD;

		ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old &
			~TTC_CLK_CNTRL_PSV_MASK;
		ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT;


		/* scale down: adjust divider in post-change notification */
		if (ndata->new_rate < ndata->old_rate)
			return NOTIFY_DONE;

		/* scale up: adjust divider now - before frequency change */
		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
		break;
	}
	case POST_RATE_CHANGE:
		/* scale up: pre-change notification did the adjustment */
		if (ndata->new_rate > ndata->old_rate)
			return NOTIFY_OK;

		/* scale down: adjust divider now - after frequency change */
		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
		break;

	case ABORT_RATE_CHANGE:
		/* we have to undo the adjustment in case we scale up */
		if (ndata->new_rate < ndata->old_rate)
			return NOTIFY_OK;

		/* restore original register value */
		writel_relaxed(ttccs->scale_clk_ctrl_reg_old,
			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
		/* fall through */
	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_DONE;
}

static int __init ttc_setup_clocksource(struct clk *clk, void __iomem *base,
					 u32 timer_width)
{
	struct ttc_timer_clocksource *ttccs;
	int err;

	ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL);
	if (!ttccs)
		return -ENOMEM;

	ttccs->ttc.clk = clk;

	err = clk_prepare_enable(ttccs->ttc.clk);
	if (err) {
		kfree(ttccs);
		return err;
	}

	ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk);

	ttccs->ttc.clk_rate_change_nb.notifier_call =
		ttc_rate_change_clocksource_cb;
	ttccs->ttc.clk_rate_change_nb.next = NULL;

	err = clk_notifier_register(ttccs->ttc.clk,
				    &ttccs->ttc.clk_rate_change_nb);
	if (err)
		pr_warn("Unable to register clock notifier.\n");

	ttccs->ttc.base_addr = base;
	ttccs->cs.name = "ttc_clocksource";
	ttccs->cs.rating = 200;
	ttccs->cs.read = __ttc_clocksource_read;
	ttccs->cs.mask = CLOCKSOURCE_MASK(timer_width);
	ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;

	/*
	 * Setup the clock source counter to be an incrementing counter
	 * with no interrupt and it rolls over at 0xFFFF. Pre-scale
	 * it by 32 also. Let it start running now.
	 */
	writel_relaxed(0x0,  ttccs->ttc.base_addr + TTC_IER_OFFSET);
	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
		     ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
	writel_relaxed(CNT_CNTRL_RESET,
		     ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);

	err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE);
	if (err) {
		kfree(ttccs);
		return err;
	}

	ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
	sched_clock_register(ttc_sched_clock_read, timer_width,
			     ttccs->ttc.freq / PRESCALE);

	return 0;
}

static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
		unsigned long event, void *data)
{
	struct clk_notifier_data *ndata = data;
	struct ttc_timer *ttc = to_ttc_timer(nb);
	struct ttc_timer_clockevent *ttcce = container_of(ttc,
			struct ttc_timer_clockevent, ttc);

	switch (event) {
	case POST_RATE_CHANGE:
		/* update cached frequency */
		ttc->freq = ndata->new_rate;

		clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE);

		/* fall through */
	case PRE_RATE_CHANGE:
	case ABORT_RATE_CHANGE:
	default:
		return NOTIFY_DONE;
	}
}

static int __init ttc_setup_clockevent(struct clk *clk,
				       void __iomem *base, u32 irq)
{
	struct ttc_timer_clockevent *ttcce;
	int err;

	ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL);
	if (!ttcce)
		return -ENOMEM;

	ttcce->ttc.clk = clk;

	err = clk_prepare_enable(ttcce->ttc.clk);
	if (err) {
		kfree(ttcce);
		return err;
	}

	ttcce->ttc.clk_rate_change_nb.notifier_call =
		ttc_rate_change_clockevent_cb;
	ttcce->ttc.clk_rate_change_nb.next = NULL;

	err = clk_notifier_register(ttcce->ttc.clk,
				    &ttcce->ttc.clk_rate_change_nb);
	if (err) {
		pr_warn("Unable to register clock notifier.\n");
		return err;
	}

	ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk);

	ttcce->ttc.base_addr = base;
	ttcce->ce.name = "ttc_clockevent";
	ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
	ttcce->ce.set_next_event = ttc_set_next_event;
	ttcce->ce.set_state_shutdown = ttc_shutdown;
	ttcce->ce.set_state_periodic = ttc_set_periodic;
	ttcce->ce.set_state_oneshot = ttc_shutdown;
	ttcce->ce.tick_resume = ttc_resume;
	ttcce->ce.rating = 200;
	ttcce->ce.irq = irq;
	ttcce->ce.cpumask = cpu_possible_mask;

	/*
	 * Setup the clock event timer to be an interval timer which
	 * is prescaled by 32 using the interval interrupt. Leave it
	 * disabled for now.
	 */
	writel_relaxed(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
		     ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
	writel_relaxed(0x1,  ttcce->ttc.base_addr + TTC_IER_OFFSET);

	err = request_irq(irq, ttc_clock_event_interrupt,
			  IRQF_TIMER, ttcce->ce.name, ttcce);
	if (err) {
		kfree(ttcce);
		return err;
	}

	clockevents_config_and_register(&ttcce->ce,
			ttcce->ttc.freq / PRESCALE, 1, 0xfffe);

	return 0;
}

/**
 * ttc_timer_init - Initialize the timer
 *
 * Initializes the timer hardware and register the clock source and clock event
 * timers with Linux kernal timer framework
 */
static int __init ttc_timer_init(struct device_node *timer)
{
	unsigned int irq;
	void __iomem *timer_baseaddr;
	struct clk *clk_cs, *clk_ce;
	static int initialized;
	int clksel, ret;
	u32 timer_width = 16;

	if (initialized)
		return 0;

	initialized = 1;

	/*
	 * Get the 1st Triple Timer Counter (TTC) block from the device tree
	 * and use it. Note that the event timer uses the interrupt and it's the
	 * 2nd TTC hence the irq_of_parse_and_map(,1)
	 */
	timer_baseaddr = of_iomap(timer, 0);
	if (!timer_baseaddr) {
		pr_err("ERROR: invalid timer base address\n");
		return -ENXIO;
	}

	irq = irq_of_parse_and_map(timer, 1);
	if (irq <= 0) {
		pr_err("ERROR: invalid interrupt number\n");
		return -EINVAL;
	}

	of_property_read_u32(timer, "timer-width", &timer_width);

	clksel = readl_relaxed(timer_baseaddr + TTC_CLK_CNTRL_OFFSET);
	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
	clk_cs = of_clk_get(timer, clksel);
	if (IS_ERR(clk_cs)) {
		pr_err("ERROR: timer input clock not found\n");
		return PTR_ERR(clk_cs);
	}

	clksel = readl_relaxed(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET);
	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
	clk_ce = of_clk_get(timer, clksel);
	if (IS_ERR(clk_ce)) {
		pr_err("ERROR: timer input clock not found\n");
		return PTR_ERR(clk_ce);
	}

	ret = ttc_setup_clocksource(clk_cs, timer_baseaddr, timer_width);
	if (ret)
		return ret;

	ret = ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq);
	if (ret)
		return ret;

	pr_info("%s #0 at %p, irq=%d\n", timer->name, timer_baseaddr, irq);

	return 0;
}

CLOCKSOURCE_OF_DECLARE(ttc, "cdns,ttc", ttc_timer_init);