setup.c 14.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
/*
 * Copyright (C) 2004-2006 Atmel Corporation
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/clk.h>
#include <linux/init.h>
#include <linux/initrd.h>
#include <linux/sched.h>
#include <linux/console.h>
#include <linux/ioport.h>
#include <linux/bootmem.h>
#include <linux/fs.h>
#include <linux/module.h>
#include <linux/pfn.h>
#include <linux/root_dev.h>
#include <linux/cpu.h>
#include <linux/kernel.h>

#include <asm/sections.h>
#include <asm/processor.h>
#include <asm/pgtable.h>
#include <asm/setup.h>
#include <asm/sysreg.h>

#include <mach/board.h>
#include <mach/init.h>

extern int root_mountflags;

/*
 * Initialize loops_per_jiffy as 5000000 (500MIPS).
 * Better make it too large than too small...
 */
struct avr32_cpuinfo boot_cpu_data = {
	.loops_per_jiffy = 5000000
};
EXPORT_SYMBOL(boot_cpu_data);

static char __initdata command_line[COMMAND_LINE_SIZE];

/*
 * Standard memory resources
 */
static struct resource __initdata kernel_data = {
	.name	= "Kernel data",
	.start	= 0,
	.end	= 0,
	.flags	= IORESOURCE_MEM,
};
static struct resource __initdata kernel_code = {
	.name	= "Kernel code",
	.start	= 0,
	.end	= 0,
	.flags	= IORESOURCE_MEM,
	.sibling = &kernel_data,
};

/*
 * Available system RAM and reserved regions as singly linked
 * lists. These lists are traversed using the sibling pointer in
 * struct resource and are kept sorted at all times.
 */
static struct resource *__initdata system_ram;
static struct resource *__initdata reserved = &kernel_code;

/*
 * We need to allocate these before the bootmem allocator is up and
 * running, so we need this "cache". 32 entries are probably enough
 * for all but the most insanely complex systems.
 */
static struct resource __initdata res_cache[32];
static unsigned int __initdata res_cache_next_free;

static void __init resource_init(void)
{
	struct resource *mem, *res;
	struct resource *new;

	kernel_code.start = __pa(init_mm.start_code);

	for (mem = system_ram; mem; mem = mem->sibling) {
		new = alloc_bootmem_low(sizeof(struct resource));
		memcpy(new, mem, sizeof(struct resource));

		new->sibling = NULL;
		if (request_resource(&iomem_resource, new))
			printk(KERN_WARNING "Bad RAM resource %08x-%08x\n",
			       mem->start, mem->end);
	}

	for (res = reserved; res; res = res->sibling) {
		new = alloc_bootmem_low(sizeof(struct resource));
		memcpy(new, res, sizeof(struct resource));

		new->sibling = NULL;
		if (insert_resource(&iomem_resource, new))
			printk(KERN_WARNING
			       "Bad reserved resource %s (%08x-%08x)\n",
			       res->name, res->start, res->end);
	}
}

static void __init
add_physical_memory(resource_size_t start, resource_size_t end)
{
	struct resource *new, *next, **pprev;

	for (pprev = &system_ram, next = system_ram; next;
	     pprev = &next->sibling, next = next->sibling) {
		if (end < next->start)
			break;
		if (start <= next->end) {
			printk(KERN_WARNING
			       "Warning: Physical memory map is broken\n");
			printk(KERN_WARNING
			       "Warning: %08x-%08x overlaps %08x-%08x\n",
			       start, end, next->start, next->end);
			return;
		}
	}

	if (res_cache_next_free >= ARRAY_SIZE(res_cache)) {
		printk(KERN_WARNING
		       "Warning: Failed to add physical memory %08x-%08x\n",
		       start, end);
		return;
	}

	new = &res_cache[res_cache_next_free++];
	new->start = start;
	new->end = end;
	new->name = "System RAM";
	new->flags = IORESOURCE_MEM;

	*pprev = new;
}

static int __init
add_reserved_region(resource_size_t start, resource_size_t end,
		    const char *name)
{
	struct resource *new, *next, **pprev;

	if (end < start)
		return -EINVAL;

	if (res_cache_next_free >= ARRAY_SIZE(res_cache))
		return -ENOMEM;

	for (pprev = &reserved, next = reserved; next;
	     pprev = &next->sibling, next = next->sibling) {
		if (end < next->start)
			break;
		if (start <= next->end)
			return -EBUSY;
	}

	new = &res_cache[res_cache_next_free++];
	new->start = start;
	new->end = end;
	new->name = name;
	new->sibling = next;
	new->flags = IORESOURCE_MEM;

	*pprev = new;

	return 0;
}

static unsigned long __init
find_free_region(const struct resource *mem, resource_size_t size,
		 resource_size_t align)
{
	struct resource *res;
	unsigned long target;

	target = ALIGN(mem->start, align);
	for (res = reserved; res; res = res->sibling) {
		if ((target + size) <= res->start)
			break;
		if (target <= res->end)
			target = ALIGN(res->end + 1, align);
	}

	if ((target + size) > (mem->end + 1))
		return mem->end + 1;

	return target;
}

static int __init
alloc_reserved_region(resource_size_t *start, resource_size_t size,
		      resource_size_t align, const char *name)
{
	struct resource *mem;
	resource_size_t target;
	int ret;

	for (mem = system_ram; mem; mem = mem->sibling) {
		target = find_free_region(mem, size, align);
		if (target <= mem->end) {
			ret = add_reserved_region(target, target + size - 1,
						  name);
			if (!ret)
				*start = target;
			return ret;
		}
	}

	return -ENOMEM;
}

/*
 * Early framebuffer allocation. Works as follows:
 *   - If fbmem_size is zero, nothing will be allocated or reserved.
 *   - If fbmem_start is zero when setup_bootmem() is called,
 *     a block of fbmem_size bytes will be reserved before bootmem
 *     initialization. It will be aligned to the largest page size
 *     that fbmem_size is a multiple of.
 *   - If fbmem_start is nonzero, an area of size fbmem_size will be
 *     reserved at the physical address fbmem_start if possible. If
 *     it collides with other reserved memory, a different block of
 *     same size will be allocated, just as if fbmem_start was zero.
 *
 * Board-specific code may use these variables to set up platform data
 * for the framebuffer driver if fbmem_size is nonzero.
 */
resource_size_t __initdata fbmem_start;
resource_size_t __initdata fbmem_size;

/*
 * "fbmem=xxx[kKmM]" allocates the specified amount of boot memory for
 * use as framebuffer.
 *
 * "fbmem=xxx[kKmM]@yyy[kKmM]" defines a memory region of size xxx and
 * starting at yyy to be reserved for use as framebuffer.
 *
 * The kernel won't verify that the memory region starting at yyy
 * actually contains usable RAM.
 */
static int __init early_parse_fbmem(char *p)
{
	int ret;
	unsigned long align;

	fbmem_size = memparse(p, &p);
	if (*p == '@') {
		fbmem_start = memparse(p + 1, &p);
		ret = add_reserved_region(fbmem_start,
					  fbmem_start + fbmem_size - 1,
					  "Framebuffer");
		if (ret) {
			printk(KERN_WARNING
			       "Failed to reserve framebuffer memory\n");
			fbmem_start = 0;
		}
	}

	if (!fbmem_start) {
		if ((fbmem_size & 0x000fffffUL) == 0)
			align = 0x100000;	/* 1 MiB */
		else if ((fbmem_size & 0x0000ffffUL) == 0)
			align = 0x10000;	/* 64 KiB */
		else
			align = 0x1000;		/* 4 KiB */

		ret = alloc_reserved_region(&fbmem_start, fbmem_size,
					    align, "Framebuffer");
		if (ret) {
			printk(KERN_WARNING
			       "Failed to allocate framebuffer memory\n");
			fbmem_size = 0;
		} else {
			memset(__va(fbmem_start), 0, fbmem_size);
		}
	}

	return 0;
}
early_param("fbmem", early_parse_fbmem);

/*
 * Pick out the memory size.  We look for mem=size@start,
 * where start and size are "size[KkMmGg]"
 */
static int __init early_mem(char *p)
{
	resource_size_t size, start;

	start = system_ram->start;
	size  = memparse(p, &p);
	if (*p == '@')
		start = memparse(p + 1, &p);

	system_ram->start = start;
	system_ram->end = system_ram->start + size - 1;
	return 0;
}
early_param("mem", early_mem);

static int __init parse_tag_core(struct tag *tag)
{
	if (tag->hdr.size > 2) {
		if ((tag->u.core.flags & 1) == 0)
			root_mountflags &= ~MS_RDONLY;
		ROOT_DEV = new_decode_dev(tag->u.core.rootdev);
	}
	return 0;
}
__tagtable(ATAG_CORE, parse_tag_core);

static int __init parse_tag_mem(struct tag *tag)
{
	unsigned long start, end;

	/*
	 * Ignore zero-sized entries. If we're running standalone, the
	 * SDRAM code may emit such entries if something goes
	 * wrong...
	 */
	if (tag->u.mem_range.size == 0)
		return 0;

	start = tag->u.mem_range.addr;
	end = tag->u.mem_range.addr + tag->u.mem_range.size - 1;

	add_physical_memory(start, end);
	return 0;
}
__tagtable(ATAG_MEM, parse_tag_mem);

static int __init parse_tag_rdimg(struct tag *tag)
{
#ifdef CONFIG_BLK_DEV_INITRD
	struct tag_mem_range *mem = &tag->u.mem_range;
	int ret;

	if (initrd_start) {
		printk(KERN_WARNING
		       "Warning: Only the first initrd image will be used\n");
		return 0;
	}

	ret = add_reserved_region(mem->addr, mem->addr + mem->size - 1,
				  "initrd");
	if (ret) {
		printk(KERN_WARNING
		       "Warning: Failed to reserve initrd memory\n");
		return ret;
	}

	initrd_start = (unsigned long)__va(mem->addr);
	initrd_end = initrd_start + mem->size;
#else
	printk(KERN_WARNING "RAM disk image present, but "
	       "no initrd support in kernel, ignoring\n");
#endif

	return 0;
}
__tagtable(ATAG_RDIMG, parse_tag_rdimg);

static int __init parse_tag_rsvd_mem(struct tag *tag)
{
	struct tag_mem_range *mem = &tag->u.mem_range;

	return add_reserved_region(mem->addr, mem->addr + mem->size - 1,
				   "Reserved");
}
__tagtable(ATAG_RSVD_MEM, parse_tag_rsvd_mem);

static int __init parse_tag_cmdline(struct tag *tag)
{
	strlcpy(boot_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
	return 0;
}
__tagtable(ATAG_CMDLINE, parse_tag_cmdline);

static int __init parse_tag_clock(struct tag *tag)
{
	/*
	 * We'll figure out the clocks by peeking at the system
	 * manager regs directly.
	 */
	return 0;
}
__tagtable(ATAG_CLOCK, parse_tag_clock);

/*
 * The board_number correspond to the bd->bi_board_number in U-Boot. This
 * parameter is only available during initialisation and can be used in some
 * kind of board identification.
 */
u32 __initdata board_number;

static int __init parse_tag_boardinfo(struct tag *tag)
{
	board_number = tag->u.boardinfo.board_number;

	return 0;
}
__tagtable(ATAG_BOARDINFO, parse_tag_boardinfo);

/*
 * Scan the tag table for this tag, and call its parse function. The
 * tag table is built by the linker from all the __tagtable
 * declarations.
 */
static int __init parse_tag(struct tag *tag)
{
	extern struct tagtable __tagtable_begin, __tagtable_end;
	struct tagtable *t;

	for (t = &__tagtable_begin; t < &__tagtable_end; t++)
		if (tag->hdr.tag == t->tag) {
			t->parse(tag);
			break;
		}

	return t < &__tagtable_end;
}

/*
 * Parse all tags in the list we got from the boot loader
 */
static void __init parse_tags(struct tag *t)
{
	for (; t->hdr.tag != ATAG_NONE; t = tag_next(t))
		if (!parse_tag(t))
			printk(KERN_WARNING
			       "Ignoring unrecognised tag 0x%08x\n",
			       t->hdr.tag);
}

/*
 * Find a free memory region large enough for storing the
 * bootmem bitmap.
 */
static unsigned long __init
find_bootmap_pfn(const struct resource *mem)
{
	unsigned long bootmap_pages, bootmap_len;
	unsigned long node_pages = PFN_UP(resource_size(mem));
	unsigned long bootmap_start;

	bootmap_pages = bootmem_bootmap_pages(node_pages);
	bootmap_len = bootmap_pages << PAGE_SHIFT;

	/*
	 * Find a large enough region without reserved pages for
	 * storing the bootmem bitmap. We can take advantage of the
	 * fact that all lists have been sorted.
	 *
	 * We have to check that we don't collide with any reserved
	 * regions, which includes the kernel image and any RAMDISK
	 * images.
	 */
	bootmap_start = find_free_region(mem, bootmap_len, PAGE_SIZE);

	return bootmap_start >> PAGE_SHIFT;
}

#define MAX_LOWMEM	HIGHMEM_START
#define MAX_LOWMEM_PFN	PFN_DOWN(MAX_LOWMEM)

static void __init setup_bootmem(void)
{
	unsigned bootmap_size;
	unsigned long first_pfn, bootmap_pfn, pages;
	unsigned long max_pfn, max_low_pfn;
	unsigned node = 0;
	struct resource *res;

	printk(KERN_INFO "Physical memory:\n");
	for (res = system_ram; res; res = res->sibling)
		printk("  %08x-%08x\n", res->start, res->end);
	printk(KERN_INFO "Reserved memory:\n");
	for (res = reserved; res; res = res->sibling)
		printk("  %08x-%08x: %s\n",
		       res->start, res->end, res->name);

	nodes_clear(node_online_map);

	if (system_ram->sibling)
		printk(KERN_WARNING "Only using first memory bank\n");

	for (res = system_ram; res; res = NULL) {
		first_pfn = PFN_UP(res->start);
		max_low_pfn = max_pfn = PFN_DOWN(res->end + 1);
		bootmap_pfn = find_bootmap_pfn(res);
		if (bootmap_pfn > max_pfn)
			panic("No space for bootmem bitmap!\n");

		if (max_low_pfn > MAX_LOWMEM_PFN) {
			max_low_pfn = MAX_LOWMEM_PFN;
#ifndef CONFIG_HIGHMEM
			/*
			 * Lowmem is memory that can be addressed
			 * directly through P1/P2
			 */
			printk(KERN_WARNING
			       "Node %u: Only %ld MiB of memory will be used.\n",
			       node, MAX_LOWMEM >> 20);
			printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
#else
#error HIGHMEM is not supported by AVR32 yet
#endif
		}

		/* Initialize the boot-time allocator with low memory only. */
		bootmap_size = init_bootmem_node(NODE_DATA(node), bootmap_pfn,
						 first_pfn, max_low_pfn);

		/*
		 * Register fully available RAM pages with the bootmem
		 * allocator.
		 */
		pages = max_low_pfn - first_pfn;
		free_bootmem_node (NODE_DATA(node), PFN_PHYS(first_pfn),
				   PFN_PHYS(pages));

		/* Reserve space for the bootmem bitmap... */
		reserve_bootmem_node(NODE_DATA(node),
				     PFN_PHYS(bootmap_pfn),
				     bootmap_size,
				     BOOTMEM_DEFAULT);

		/* ...and any other reserved regions. */
		for (res = reserved; res; res = res->sibling) {
			if (res->start > PFN_PHYS(max_pfn))
				break;

			/*
			 * resource_init will complain about partial
			 * overlaps, so we'll just ignore such
			 * resources for now.
			 */
			if (res->start >= PFN_PHYS(first_pfn)
			    && res->end < PFN_PHYS(max_pfn))
				reserve_bootmem_node(NODE_DATA(node),
						     res->start,
						     resource_size(res),
						     BOOTMEM_DEFAULT);
		}

		node_set_online(node);
	}
}

void __init setup_arch (char **cmdline_p)
{
	struct clk *cpu_clk;

	init_mm.start_code = (unsigned long)_stext;
	init_mm.end_code = (unsigned long)_etext;
	init_mm.end_data = (unsigned long)_edata;
	init_mm.brk = (unsigned long)_end;

	/*
	 * Include .init section to make allocations easier. It will
	 * be removed before the resource is actually requested.
	 */
	kernel_code.start = __pa(__init_begin);
	kernel_code.end = __pa(init_mm.end_code - 1);
	kernel_data.start = __pa(init_mm.end_code);
	kernel_data.end = __pa(init_mm.brk - 1);

	parse_tags(bootloader_tags);

	setup_processor();
	setup_platform();
	setup_board();

	cpu_clk = clk_get(NULL, "cpu");
	if (IS_ERR(cpu_clk)) {
		printk(KERN_WARNING "Warning: Unable to get CPU clock\n");
	} else {
		unsigned long cpu_hz = clk_get_rate(cpu_clk);

		/*
		 * Well, duh, but it's probably a good idea to
		 * increment the use count.
		 */
		clk_enable(cpu_clk);

		boot_cpu_data.clk = cpu_clk;
		boot_cpu_data.loops_per_jiffy = cpu_hz * 4;
		printk("CPU: Running at %lu.%03lu MHz\n",
		       ((cpu_hz + 500) / 1000) / 1000,
		       ((cpu_hz + 500) / 1000) % 1000);
	}

	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
	*cmdline_p = command_line;
	parse_early_param();

	setup_bootmem();

#ifdef CONFIG_VT
	conswitchp = &dummy_con;
#endif

	paging_init();
	resource_init();
}