dma.c 11.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
/*
 *  Meta version derived from arch/powerpc/lib/dma-noncoherent.c
 *    Copyright (C) 2008 Imagination Technologies Ltd.
 *
 *  PowerPC version derived from arch/arm/mm/consistent.c
 *    Copyright (C) 2001 Dan Malek (dmalek@jlc.net)
 *
 *  Copyright (C) 2000 Russell King
 *
 * Consistent memory allocators.  Used for DMA devices that want to
 * share uncached memory with the processor core.  The function return
 * is the virtual address and 'dma_handle' is the physical address.
 * Mostly stolen from the ARM port, with some changes for PowerPC.
 *						-- Dan
 *
 * Reorganized to get rid of the arch-specific consistent_* functions
 * and provide non-coherent implementations for the DMA API. -Matt
 *
 * Added in_interrupt() safe dma_alloc_coherent()/dma_free_coherent()
 * implementation. This is pulled straight from ARM and barely
 * modified. -Matt
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/highmem.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>

#include <asm/tlbflush.h>
#include <asm/mmu.h>

#define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - CONSISTENT_START) \
					>> PAGE_SHIFT)

static u64 get_coherent_dma_mask(struct device *dev)
{
	u64 mask = ~0ULL;

	if (dev) {
		mask = dev->coherent_dma_mask;

		/*
		 * Sanity check the DMA mask - it must be non-zero, and
		 * must be able to be satisfied by a DMA allocation.
		 */
		if (mask == 0) {
			dev_warn(dev, "coherent DMA mask is unset\n");
			return 0;
		}
	}

	return mask;
}
/*
 * This is the page table (2MB) covering uncached, DMA consistent allocations
 */
static pte_t *consistent_pte;
static DEFINE_SPINLOCK(consistent_lock);

/*
 * VM region handling support.
 *
 * This should become something generic, handling VM region allocations for
 * vmalloc and similar (ioremap, module space, etc).
 *
 * I envisage vmalloc()'s supporting vm_struct becoming:
 *
 *  struct vm_struct {
 *    struct metag_vm_region	region;
 *    unsigned long	flags;
 *    struct page	**pages;
 *    unsigned int	nr_pages;
 *    unsigned long	phys_addr;
 *  };
 *
 * get_vm_area() would then call metag_vm_region_alloc with an appropriate
 * struct metag_vm_region head (eg):
 *
 *  struct metag_vm_region vmalloc_head = {
 *	.vm_list	= LIST_HEAD_INIT(vmalloc_head.vm_list),
 *	.vm_start	= VMALLOC_START,
 *	.vm_end		= VMALLOC_END,
 *  };
 *
 * However, vmalloc_head.vm_start is variable (typically, it is dependent on
 * the amount of RAM found at boot time.)  I would imagine that get_vm_area()
 * would have to initialise this each time prior to calling
 * metag_vm_region_alloc().
 */
struct metag_vm_region {
	struct list_head vm_list;
	unsigned long vm_start;
	unsigned long vm_end;
	struct page		*vm_pages;
	int			vm_active;
};

static struct metag_vm_region consistent_head = {
	.vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
	.vm_start = CONSISTENT_START,
	.vm_end = CONSISTENT_END,
};

static struct metag_vm_region *metag_vm_region_alloc(struct metag_vm_region
						     *head, size_t size,
						     gfp_t gfp)
{
	unsigned long addr = head->vm_start, end = head->vm_end - size;
	unsigned long flags;
	struct metag_vm_region *c, *new;

	new = kmalloc(sizeof(struct metag_vm_region), gfp);
	if (!new)
		goto out;

	spin_lock_irqsave(&consistent_lock, flags);

	list_for_each_entry(c, &head->vm_list, vm_list) {
		if ((addr + size) < addr)
			goto nospc;
		if ((addr + size) <= c->vm_start)
			goto found;
		addr = c->vm_end;
		if (addr > end)
			goto nospc;
	}

found:
	/*
	 * Insert this entry _before_ the one we found.
	 */
	list_add_tail(&new->vm_list, &c->vm_list);
	new->vm_start = addr;
	new->vm_end = addr + size;
	new->vm_active = 1;

	spin_unlock_irqrestore(&consistent_lock, flags);
	return new;

nospc:
	spin_unlock_irqrestore(&consistent_lock, flags);
	kfree(new);
out:
	return NULL;
}

static struct metag_vm_region *metag_vm_region_find(struct metag_vm_region
						    *head, unsigned long addr)
{
	struct metag_vm_region *c;

	list_for_each_entry(c, &head->vm_list, vm_list) {
		if (c->vm_active && c->vm_start == addr)
			goto out;
	}
	c = NULL;
out:
	return c;
}

/*
 * Allocate DMA-coherent memory space and return both the kernel remapped
 * virtual and bus address for that space.
 */
void *dma_alloc_coherent(struct device *dev, size_t size,
			 dma_addr_t *handle, gfp_t gfp)
{
	struct page *page;
	struct metag_vm_region *c;
	unsigned long order;
	u64 mask = get_coherent_dma_mask(dev);
	u64 limit;

	if (!consistent_pte) {
		pr_err("%s: not initialised\n", __func__);
		dump_stack();
		return NULL;
	}

	if (!mask)
		goto no_page;
	size = PAGE_ALIGN(size);
	limit = (mask + 1) & ~mask;
	if ((limit && size >= limit)
	    || size >= (CONSISTENT_END - CONSISTENT_START)) {
		pr_warn("coherent allocation too big (requested %#x mask %#Lx)\n",
			size, mask);
		return NULL;
	}

	order = get_order(size);

	if (mask != 0xffffffff)
		gfp |= GFP_DMA;

	page = alloc_pages(gfp, order);
	if (!page)
		goto no_page;

	/*
	 * Invalidate any data that might be lurking in the
	 * kernel direct-mapped region for device DMA.
	 */
	{
		void *kaddr = page_address(page);
		memset(kaddr, 0, size);
		flush_dcache_region(kaddr, size);
	}

	/*
	 * Allocate a virtual address in the consistent mapping region.
	 */
	c = metag_vm_region_alloc(&consistent_head, size,
				  gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
	if (c) {
		unsigned long vaddr = c->vm_start;
		pte_t *pte = consistent_pte + CONSISTENT_OFFSET(vaddr);
		struct page *end = page + (1 << order);

		c->vm_pages = page;
		split_page(page, order);

		/*
		 * Set the "dma handle"
		 */
		*handle = page_to_bus(page);

		do {
			BUG_ON(!pte_none(*pte));

			SetPageReserved(page);
			set_pte_at(&init_mm, vaddr,
				   pte, mk_pte(page,
					       pgprot_writecombine
					       (PAGE_KERNEL)));
			page++;
			pte++;
			vaddr += PAGE_SIZE;
		} while (size -= PAGE_SIZE);

		/*
		 * Free the otherwise unused pages.
		 */
		while (page < end) {
			__free_page(page);
			page++;
		}

		return (void *)c->vm_start;
	}

	if (page)
		__free_pages(page, order);
no_page:
	return NULL;
}
EXPORT_SYMBOL(dma_alloc_coherent);

/*
 * free a page as defined by the above mapping.
 */
void dma_free_coherent(struct device *dev, size_t size,
		       void *vaddr, dma_addr_t dma_handle)
{
	struct metag_vm_region *c;
	unsigned long flags, addr;
	pte_t *ptep;

	size = PAGE_ALIGN(size);

	spin_lock_irqsave(&consistent_lock, flags);

	c = metag_vm_region_find(&consistent_head, (unsigned long)vaddr);
	if (!c)
		goto no_area;

	c->vm_active = 0;
	if ((c->vm_end - c->vm_start) != size) {
		pr_err("%s: freeing wrong coherent size (%ld != %d)\n",
		       __func__, c->vm_end - c->vm_start, size);
		dump_stack();
		size = c->vm_end - c->vm_start;
	}

	ptep = consistent_pte + CONSISTENT_OFFSET(c->vm_start);
	addr = c->vm_start;
	do {
		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
		unsigned long pfn;

		ptep++;
		addr += PAGE_SIZE;

		if (!pte_none(pte) && pte_present(pte)) {
			pfn = pte_pfn(pte);

			if (pfn_valid(pfn)) {
				struct page *page = pfn_to_page(pfn);
				__free_reserved_page(page);
				continue;
			}
		}

		pr_crit("%s: bad page in kernel page table\n",
			__func__);
	} while (size -= PAGE_SIZE);

	flush_tlb_kernel_range(c->vm_start, c->vm_end);

	list_del(&c->vm_list);

	spin_unlock_irqrestore(&consistent_lock, flags);

	kfree(c);
	return;

no_area:
	spin_unlock_irqrestore(&consistent_lock, flags);
	pr_err("%s: trying to free invalid coherent area: %p\n",
	       __func__, vaddr);
	dump_stack();
}
EXPORT_SYMBOL(dma_free_coherent);


static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
{
	int ret = -ENXIO;

	unsigned long flags, user_size, kern_size;
	struct metag_vm_region *c;

	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;

	spin_lock_irqsave(&consistent_lock, flags);
	c = metag_vm_region_find(&consistent_head, (unsigned long)cpu_addr);
	spin_unlock_irqrestore(&consistent_lock, flags);

	if (c) {
		unsigned long off = vma->vm_pgoff;

		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;

		if (off < kern_size &&
		    user_size <= (kern_size - off)) {
			ret = remap_pfn_range(vma, vma->vm_start,
					      page_to_pfn(c->vm_pages) + off,
					      user_size << PAGE_SHIFT,
					      vma->vm_page_prot);
		}
	}


	return ret;
}

int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
		      void *cpu_addr, dma_addr_t dma_addr, size_t size)
{
	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
}
EXPORT_SYMBOL(dma_mmap_coherent);

int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
			  void *cpu_addr, dma_addr_t dma_addr, size_t size)
{
	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
}
EXPORT_SYMBOL(dma_mmap_writecombine);




/*
 * Initialise the consistent memory allocation.
 */
static int __init dma_alloc_init(void)
{
	pgd_t *pgd, *pgd_k;
	pud_t *pud, *pud_k;
	pmd_t *pmd, *pmd_k;
	pte_t *pte;
	int ret = 0;

	do {
		int offset = pgd_index(CONSISTENT_START);
		pgd = pgd_offset(&init_mm, CONSISTENT_START);
		pud = pud_alloc(&init_mm, pgd, CONSISTENT_START);
		pmd = pmd_alloc(&init_mm, pud, CONSISTENT_START);
		WARN_ON(!pmd_none(*pmd));

		pte = pte_alloc_kernel(pmd, CONSISTENT_START);
		if (!pte) {
			pr_err("%s: no pte tables\n", __func__);
			ret = -ENOMEM;
			break;
		}

		pgd_k = ((pgd_t *) mmu_get_base()) + offset;
		pud_k = pud_offset(pgd_k, CONSISTENT_START);
		pmd_k = pmd_offset(pud_k, CONSISTENT_START);
		set_pmd(pmd_k, *pmd);

		consistent_pte = pte;
	} while (0);

	return ret;
}
early_initcall(dma_alloc_init);

/*
 * make an area consistent to devices.
 */
void dma_sync_for_device(void *vaddr, size_t size, int dma_direction)
{
	/*
	 * Ensure any writes get through the write combiner. This is necessary
	 * even with DMA_FROM_DEVICE, or the write may dirty the cache after
	 * we've invalidated it and get written back during the DMA.
	 */

	barrier();

	switch (dma_direction) {
	case DMA_BIDIRECTIONAL:
		/*
		 * Writeback to ensure the device can see our latest changes and
		 * so that we have no dirty lines, and invalidate the cache
		 * lines too in preparation for receiving the buffer back
		 * (dma_sync_for_cpu) later.
		 */
		flush_dcache_region(vaddr, size);
		break;
	case DMA_TO_DEVICE:
		/*
		 * Writeback to ensure the device can see our latest changes.
		 * There's no need to invalidate as the device shouldn't write
		 * to the buffer.
		 */
		writeback_dcache_region(vaddr, size);
		break;
	case DMA_FROM_DEVICE:
		/*
		 * Invalidate to ensure we have no dirty lines that could get
		 * written back during the DMA. It's also safe to flush
		 * (writeback) here if necessary.
		 */
		invalidate_dcache_region(vaddr, size);
		break;
	case DMA_NONE:
		BUG();
	}

	wmb();
}
EXPORT_SYMBOL(dma_sync_for_device);

/*
 * make an area consistent to the core.
 */
void dma_sync_for_cpu(void *vaddr, size_t size, int dma_direction)
{
	/*
	 * Hardware L2 cache prefetch doesn't occur across 4K physical
	 * boundaries, however according to Documentation/DMA-API-HOWTO.txt
	 * kmalloc'd memory is DMA'able, so accesses in nearby memory could
	 * trigger a cache fill in the DMA buffer.
	 *
	 * This should never cause dirty lines, so a flush or invalidate should
	 * be safe to allow us to see data from the device.
	 */
	if (_meta_l2c_pf_is_enabled()) {
		switch (dma_direction) {
		case DMA_BIDIRECTIONAL:
		case DMA_FROM_DEVICE:
			invalidate_dcache_region(vaddr, size);
			break;
		case DMA_TO_DEVICE:
			/* The device shouldn't have written to the buffer */
			break;
		case DMA_NONE:
			BUG();
		}
	}

	rmb();
}
EXPORT_SYMBOL(dma_sync_for_cpu);