clocks-common.c 21.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
/*
 *
 * Clock initialization for OMAP4
 *
 * (C) Copyright 2010
 * Texas Instruments, <www.ti.com>
 *
 * Aneesh V <aneesh@ti.com>
 *
 * Based on previous work by:
 *	Santosh Shilimkar <santosh.shilimkar@ti.com>
 *	Rajendra Nayak <rnayak@ti.com>
 *
 * See file CREDITS for list of people who contributed to this
 * project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */
#include <common.h>
#include <i2c.h>
#include <asm/omap_common.h>
#include <asm/gpio.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
#include <asm/utils.h>
#include <asm/omap_gpio.h>
#include <asm/emif.h>

#ifndef CONFIG_SPL_BUILD
/*
 * printing to console doesn't work unless
 * this code is executed from SPL
 */
#define printf(fmt, args...)
#define puts(s)
#endif

const u32 sys_clk_array[8] = {
	12000000,	       /* 12 MHz */
	20000000,		/* 20 MHz */
	16800000,	       /* 16.8 MHz */
	19200000,	       /* 19.2 MHz */
	26000000,	       /* 26 MHz */
	27000000,	       /* 27 MHz */
	38400000,	       /* 38.4 MHz */
};

static inline u32 __get_sys_clk_index(void)
{
	s8 ind;
	/*
	 * For ES1 the ROM code calibration of sys clock is not reliable
	 * due to hw issue. So, use hard-coded value. If this value is not
	 * correct for any board over-ride this function in board file
	 * From ES2.0 onwards you will get this information from
	 * CM_SYS_CLKSEL
	 */
	if (omap_revision() == OMAP4430_ES1_0)
		ind = OMAP_SYS_CLK_IND_38_4_MHZ;
	else {
		/* SYS_CLKSEL - 1 to match the dpll param array indices */
		ind = (readl((*prcm)->cm_sys_clksel) &
			CM_SYS_CLKSEL_SYS_CLKSEL_MASK) - 1;
	}
	return ind;
}

u32 get_sys_clk_index(void)
	__attribute__ ((weak, alias("__get_sys_clk_index")));

u32 get_sys_clk_freq(void)
{
	u8 index = get_sys_clk_index();
	return sys_clk_array[index];
}

void setup_post_dividers(u32 const base, const struct dpll_params *params)
{
	struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;

	/* Setup post-dividers */
	if (params->m2 >= 0)
		writel(params->m2, &dpll_regs->cm_div_m2_dpll);
	if (params->m3 >= 0)
		writel(params->m3, &dpll_regs->cm_div_m3_dpll);
	if (params->m4_h11 >= 0)
		writel(params->m4_h11, &dpll_regs->cm_div_m4_h11_dpll);
	if (params->m5_h12 >= 0)
		writel(params->m5_h12, &dpll_regs->cm_div_m5_h12_dpll);
	if (params->m6_h13 >= 0)
		writel(params->m6_h13, &dpll_regs->cm_div_m6_h13_dpll);
	if (params->m7_h14 >= 0)
		writel(params->m7_h14, &dpll_regs->cm_div_m7_h14_dpll);
	if (params->h21 >= 0)
		writel(params->h21, &dpll_regs->cm_div_h21_dpll);
	if (params->h22 >= 0)
		writel(params->h22, &dpll_regs->cm_div_h22_dpll);
	if (params->h23 >= 0)
		writel(params->h23, &dpll_regs->cm_div_h23_dpll);
	if (params->h24 >= 0)
		writel(params->h24, &dpll_regs->cm_div_h24_dpll);
}

static inline void do_bypass_dpll(u32 const base)
{
	struct dpll_regs *dpll_regs = (struct dpll_regs *)base;

	clrsetbits_le32(&dpll_regs->cm_clkmode_dpll,
			CM_CLKMODE_DPLL_DPLL_EN_MASK,
			DPLL_EN_FAST_RELOCK_BYPASS <<
			CM_CLKMODE_DPLL_EN_SHIFT);
}

static inline void wait_for_bypass(u32 const base)
{
	struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;

	if (!wait_on_value(ST_DPLL_CLK_MASK, 0, &dpll_regs->cm_idlest_dpll,
				LDELAY)) {
		printf("Bypassing DPLL failed %x\n", base);
	}
}

static inline void do_lock_dpll(u32 const base)
{
	struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;

	clrsetbits_le32(&dpll_regs->cm_clkmode_dpll,
		      CM_CLKMODE_DPLL_DPLL_EN_MASK,
		      DPLL_EN_LOCK << CM_CLKMODE_DPLL_EN_SHIFT);
}

static inline void wait_for_lock(u32 const base)
{
	struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;

	if (!wait_on_value(ST_DPLL_CLK_MASK, ST_DPLL_CLK_MASK,
		&dpll_regs->cm_idlest_dpll, LDELAY)) {
		printf("DPLL locking failed for %x\n", base);
		hang();
	}
}

inline u32 check_for_lock(u32 const base)
{
	struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
	u32 lock = readl(&dpll_regs->cm_idlest_dpll) & ST_DPLL_CLK_MASK;

	return lock;
}

const struct dpll_params *get_mpu_dpll_params(struct dplls const *dpll_data)
{
	u32 sysclk_ind = get_sys_clk_index();
	return &dpll_data->mpu[sysclk_ind];
}

const struct dpll_params *get_core_dpll_params(struct dplls const *dpll_data)
{
	u32 sysclk_ind = get_sys_clk_index();
	return &dpll_data->core[sysclk_ind];
}

const struct dpll_params *get_per_dpll_params(struct dplls const *dpll_data)
{
	u32 sysclk_ind = get_sys_clk_index();
	return &dpll_data->per[sysclk_ind];
}

const struct dpll_params *get_iva_dpll_params(struct dplls const *dpll_data)
{
	u32 sysclk_ind = get_sys_clk_index();
	return &dpll_data->iva[sysclk_ind];
}

const struct dpll_params *get_usb_dpll_params(struct dplls const *dpll_data)
{
	u32 sysclk_ind = get_sys_clk_index();
	return &dpll_data->usb[sysclk_ind];
}

const struct dpll_params *get_abe_dpll_params(struct dplls const *dpll_data)
{
#ifdef CONFIG_SYS_OMAP_ABE_SYSCK
	u32 sysclk_ind = get_sys_clk_index();
	return &dpll_data->abe[sysclk_ind];
#else
	return dpll_data->abe;
#endif
}

static const struct dpll_params *get_ddr_dpll_params
			(struct dplls const *dpll_data)
{
	u32 sysclk_ind = get_sys_clk_index();

	if (!dpll_data->ddr)
		return NULL;
	return &dpll_data->ddr[sysclk_ind];
}

static void do_setup_dpll(u32 const base, const struct dpll_params *params,
				u8 lock, char *dpll)
{
	u32 temp, M, N;
	struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;

	if (!params)
		return;

	temp = readl(&dpll_regs->cm_clksel_dpll);

	if (check_for_lock(base)) {
		/*
		 * The Dpll has already been locked by rom code using CH.
		 * Check if M,N are matching with Ideal nominal opp values.
		 * If matches, skip the rest otherwise relock.
		 */
		M = (temp & CM_CLKSEL_DPLL_M_MASK) >> CM_CLKSEL_DPLL_M_SHIFT;
		N = (temp & CM_CLKSEL_DPLL_N_MASK) >> CM_CLKSEL_DPLL_N_SHIFT;
		if ((M != (params->m)) || (N != (params->n))) {
			debug("\n %s Dpll locked, but not for ideal M = %d,"
				"N = %d values, current values are M = %d,"
				"N= %d" , dpll, params->m, params->n,
				M, N);
		} else {
			/* Dpll locked with ideal values for nominal opps. */
			debug("\n %s Dpll already locked with ideal"
						"nominal opp values", dpll);
			goto setup_post_dividers;
		}
	}

	bypass_dpll(base);

	/* Set M & N */
	temp &= ~CM_CLKSEL_DPLL_M_MASK;
	temp |= (params->m << CM_CLKSEL_DPLL_M_SHIFT) & CM_CLKSEL_DPLL_M_MASK;

	temp &= ~CM_CLKSEL_DPLL_N_MASK;
	temp |= (params->n << CM_CLKSEL_DPLL_N_SHIFT) & CM_CLKSEL_DPLL_N_MASK;

	writel(temp, &dpll_regs->cm_clksel_dpll);

	/* Lock */
	if (lock)
		do_lock_dpll(base);

setup_post_dividers:
	setup_post_dividers(base, params);

	/* Wait till the DPLL locks */
	if (lock)
		wait_for_lock(base);
}

u32 omap_ddr_clk(void)
{
	u32 ddr_clk, sys_clk_khz, omap_rev, divider;
	const struct dpll_params *core_dpll_params;

	omap_rev = omap_revision();
	sys_clk_khz = get_sys_clk_freq() / 1000;

	core_dpll_params = get_core_dpll_params(*dplls_data);

	debug("sys_clk %d\n ", sys_clk_khz * 1000);

	/* Find Core DPLL locked frequency first */
	ddr_clk = sys_clk_khz * 2 * core_dpll_params->m /
			(core_dpll_params->n + 1);

	if (omap_rev < OMAP5430_ES1_0) {
		/*
		 * DDR frequency is PHY_ROOT_CLK/2
		 * PHY_ROOT_CLK = Fdpll/2/M2
		 */
		divider = 4;
	} else {
		/*
		 * DDR frequency is PHY_ROOT_CLK
		 * PHY_ROOT_CLK = Fdpll/2/M2
		 */
		divider = 2;
	}

	ddr_clk = ddr_clk / divider / core_dpll_params->m2;
	ddr_clk *= 1000;	/* convert to Hz */
	debug("ddr_clk %d\n ", ddr_clk);

	return ddr_clk;
}

/*
 * Lock MPU dpll
 *
 * Resulting MPU frequencies:
 * 4430 ES1.0	: 600 MHz
 * 4430 ES2.x	: 792 MHz (OPP Turbo)
 * 4460		: 920 MHz (OPP Turbo) - DCC disabled
 */
void configure_mpu_dpll(void)
{
	const struct dpll_params *params;
	struct dpll_regs *mpu_dpll_regs;
	u32 omap_rev;
	omap_rev = omap_revision();

	/*
	 * DCC and clock divider settings for 4460.
	 * DCC is required, if more than a certain frequency is required.
	 * For, 4460 > 1GHZ.
	 *     5430 > 1.4GHZ.
	 */
	if ((omap_rev >= OMAP4460_ES1_0) && (omap_rev < OMAP5430_ES1_0)) {
		mpu_dpll_regs =
			(struct dpll_regs *)((*prcm)->cm_clkmode_dpll_mpu);
		bypass_dpll((*prcm)->cm_clkmode_dpll_mpu);
		clrbits_le32((*prcm)->cm_mpu_mpu_clkctrl,
			MPU_CLKCTRL_CLKSEL_EMIF_DIV_MODE_MASK);
		setbits_le32((*prcm)->cm_mpu_mpu_clkctrl,
			MPU_CLKCTRL_CLKSEL_ABE_DIV_MODE_MASK);
		clrbits_le32(&mpu_dpll_regs->cm_clksel_dpll,
			CM_CLKSEL_DCC_EN_MASK);
	}

	params = get_mpu_dpll_params(*dplls_data);

	do_setup_dpll((*prcm)->cm_clkmode_dpll_mpu, params, DPLL_LOCK, "mpu");
	debug("MPU DPLL locked\n");
}

#ifdef CONFIG_USB_EHCI_OMAP
static void setup_usb_dpll(void)
{
	const struct dpll_params *params;
	u32 sys_clk_khz, sd_div, num, den;

	sys_clk_khz = get_sys_clk_freq() / 1000;
	/*
	 * USB:
	 * USB dpll is J-type. Need to set DPLL_SD_DIV for jitter correction
	 * DPLL_SD_DIV = CEILING ([DPLL_MULT/(DPLL_DIV+1)]* CLKINP / 250)
	 *      - where CLKINP is sys_clk in MHz
	 * Use CLKINP in KHz and adjust the denominator accordingly so
	 * that we have enough accuracy and at the same time no overflow
	 */
	params = get_usb_dpll_params(*dplls_data);
	num = params->m * sys_clk_khz;
	den = (params->n + 1) * 250 * 1000;
	num += den - 1;
	sd_div = num / den;
	clrsetbits_le32((*prcm)->cm_clksel_dpll_usb,
			CM_CLKSEL_DPLL_DPLL_SD_DIV_MASK,
			sd_div << CM_CLKSEL_DPLL_DPLL_SD_DIV_SHIFT);

	/* Now setup the dpll with the regular function */
	do_setup_dpll((*prcm)->cm_clkmode_dpll_usb, params, DPLL_LOCK, "usb");
}
#endif

static void setup_dplls(void)
{
	u32 temp;
	const struct dpll_params *params;

	debug("setup_dplls\n");

	/* CORE dpll */
	params = get_core_dpll_params(*dplls_data);	/* default - safest */
	/*
	 * Do not lock the core DPLL now. Just set it up.
	 * Core DPLL will be locked after setting up EMIF
	 * using the FREQ_UPDATE method(freq_update_core())
	 */
	if (emif_sdram_type() == EMIF_SDRAM_TYPE_LPDDR2)
		do_setup_dpll((*prcm)->cm_clkmode_dpll_core, params,
							DPLL_NO_LOCK, "core");
	else
		do_setup_dpll((*prcm)->cm_clkmode_dpll_core, params,
							DPLL_LOCK, "core");
	/* Set the ratios for CORE_CLK, L3_CLK, L4_CLK */
	temp = (CLKSEL_CORE_X2_DIV_1 << CLKSEL_CORE_SHIFT) |
	    (CLKSEL_L3_CORE_DIV_2 << CLKSEL_L3_SHIFT) |
	    (CLKSEL_L4_L3_DIV_2 << CLKSEL_L4_SHIFT);
	writel(temp, (*prcm)->cm_clksel_core);
	debug("Core DPLL configured\n");

	/* lock PER dpll */
	params = get_per_dpll_params(*dplls_data);
	do_setup_dpll((*prcm)->cm_clkmode_dpll_per,
			params, DPLL_LOCK, "per");
	debug("PER DPLL locked\n");

	/* MPU dpll */
	configure_mpu_dpll();

#ifdef CONFIG_USB_EHCI_OMAP
	setup_usb_dpll();
#endif
	params = get_ddr_dpll_params(*dplls_data);
	do_setup_dpll((*prcm)->cm_clkmode_dpll_ddrphy,
		      params, DPLL_LOCK, "ddr");
}

#ifdef CONFIG_SYS_CLOCKS_ENABLE_ALL
static void setup_non_essential_dplls(void)
{
	u32 abe_ref_clk;
	const struct dpll_params *params;

	/* IVA */
	clrsetbits_le32((*prcm)->cm_bypclk_dpll_iva,
		CM_BYPCLK_DPLL_IVA_CLKSEL_MASK, DPLL_IVA_CLKSEL_CORE_X2_DIV_2);

	params = get_iva_dpll_params(*dplls_data);
	do_setup_dpll((*prcm)->cm_clkmode_dpll_iva, params, DPLL_LOCK, "iva");

	/* Configure ABE dpll */
	params = get_abe_dpll_params(*dplls_data);
#ifdef CONFIG_SYS_OMAP_ABE_SYSCK
	abe_ref_clk = CM_ABE_PLL_REF_CLKSEL_CLKSEL_SYSCLK;

	if (omap_revision() == DRA752_ES1_0)
		/* Select the sys clk for dpll_abe */
		clrsetbits_le32((*prcm)->cm_abe_pll_sys_clksel,
				CM_CLKSEL_ABE_PLL_SYS_CLKSEL_MASK,
				CM_ABE_PLL_SYS_CLKSEL_SYSCLK2);
#else
	abe_ref_clk = CM_ABE_PLL_REF_CLKSEL_CLKSEL_32KCLK;
	/*
	 * We need to enable some additional options to achieve
	 * 196.608MHz from 32768 Hz
	 */
	setbits_le32((*prcm)->cm_clkmode_dpll_abe,
			CM_CLKMODE_DPLL_DRIFTGUARD_EN_MASK|
			CM_CLKMODE_DPLL_RELOCK_RAMP_EN_MASK|
			CM_CLKMODE_DPLL_LPMODE_EN_MASK|
			CM_CLKMODE_DPLL_REGM4XEN_MASK);
	/* Spend 4 REFCLK cycles at each stage */
	clrsetbits_le32((*prcm)->cm_clkmode_dpll_abe,
			CM_CLKMODE_DPLL_RAMP_RATE_MASK,
			1 << CM_CLKMODE_DPLL_RAMP_RATE_SHIFT);
#endif

	/* Select the right reference clk */
	clrsetbits_le32((*prcm)->cm_abe_pll_ref_clksel,
			CM_ABE_PLL_REF_CLKSEL_CLKSEL_MASK,
			abe_ref_clk << CM_ABE_PLL_REF_CLKSEL_CLKSEL_SHIFT);
	/* Lock the dpll */
	do_setup_dpll((*prcm)->cm_clkmode_dpll_abe, params, DPLL_LOCK, "abe");
}
#endif

u32 get_offset_code(u32 volt_offset, struct pmic_data *pmic)
{
	u32 offset_code;

	volt_offset -= pmic->base_offset;

	offset_code = (volt_offset + pmic->step - 1) / pmic->step;

	/*
	 * Offset codes 1-6 all give the base voltage in Palmas
	 * Offset code 0 switches OFF the SMPS
	 */
	return offset_code + pmic->start_code;
}

void do_scale_vcore(u32 vcore_reg, u32 volt_mv, struct pmic_data *pmic)
{
	u32 offset_code;
	u32 offset = volt_mv;
	int ret = 0;

	if (!volt_mv)
		return;

	pmic->pmic_bus_init();
	/* See if we can first get the GPIO if needed */
	if (pmic->gpio_en)
		ret = gpio_request(pmic->gpio, "PMIC_GPIO");

	if (ret < 0) {
		printf("%s: gpio %d request failed %d\n", __func__,
							pmic->gpio, ret);
		return;
	}

	/* Pull the GPIO low to select SET0 register, while we program SET1 */
	if (pmic->gpio_en)
		gpio_direction_output(pmic->gpio, 0);

	/* convert to uV for better accuracy in the calculations */
	offset *= 1000;

	offset_code = get_offset_code(offset, pmic);

	debug("do_scale_vcore: volt - %d offset_code - 0x%x\n", volt_mv,
		offset_code);

	if (pmic->pmic_write(pmic->i2c_slave_addr, vcore_reg, offset_code))
		printf("Scaling voltage failed for 0x%x\n", vcore_reg);

	if (pmic->gpio_en)
		gpio_direction_output(pmic->gpio, 1);
}

static u32 optimize_vcore_voltage(struct volts const *v)
{
	u32 val;
	if (!v->value)
		return 0;
	if (!v->efuse.reg)
		return v->value;

	switch (v->efuse.reg_bits) {
	case 16:
		val = readw(v->efuse.reg);
		break;
	case 32:
		val = readl(v->efuse.reg);
		break;
	default:
		printf("Error: efuse 0x%08x bits=%d unknown\n",
		       v->efuse.reg, v->efuse.reg_bits);
		return v->value;
	}

	if (!val) {
		printf("Error: efuse 0x%08x bits=%d val=0, using %d\n",
		       v->efuse.reg, v->efuse.reg_bits, v->value);
		return v->value;
	}

	debug("%s:efuse 0x%08x bits=%d Vnom=%d, using efuse value %d\n",
	      __func__, v->efuse.reg, v->efuse.reg_bits, v->value, val);
	return val;
}

/*
 * Setup the voltages for vdd_mpu, vdd_core, and vdd_iva
 * We set the maximum voltages allowed here because Smart-Reflex is not
 * enabled in bootloader. Voltage initialization in the kernel will set
 * these to the nominal values after enabling Smart-Reflex
 */
void scale_vcores(struct vcores_data const *vcores)
{
	u32 val;

	val = optimize_vcore_voltage(&vcores->core);
	do_scale_vcore(vcores->core.addr, val, vcores->core.pmic);

	val = optimize_vcore_voltage(&vcores->mpu);
	do_scale_vcore(vcores->mpu.addr, val, vcores->mpu.pmic);

	/* Configure MPU ABB LDO after scale */
	abb_setup((*ctrl)->control_std_fuse_opp_vdd_mpu_2,
		  (*ctrl)->control_wkup_ldovbb_mpu_voltage_ctrl,
		  (*prcm)->prm_abbldo_mpu_setup,
		  (*prcm)->prm_abbldo_mpu_ctrl,
		  (*prcm)->prm_irqstatus_mpu_2,
		  OMAP_ABB_MPU_TXDONE_MASK,
		  OMAP_ABB_FAST_OPP);

	val = optimize_vcore_voltage(&vcores->mm);
	do_scale_vcore(vcores->mm.addr, val, vcores->mm.pmic);

	val = optimize_vcore_voltage(&vcores->gpu);
	do_scale_vcore(vcores->gpu.addr, val, vcores->gpu.pmic);

	val = optimize_vcore_voltage(&vcores->eve);
	do_scale_vcore(vcores->eve.addr, val, vcores->eve.pmic);

	val = optimize_vcore_voltage(&vcores->iva);
	do_scale_vcore(vcores->iva.addr, val, vcores->iva.pmic);

	 if (emif_sdram_type() == EMIF_SDRAM_TYPE_DDR3) {
		/* Configure LDO SRAM "magic" bits */
		writel(2, (*prcm)->prm_sldo_core_setup);
		writel(2, (*prcm)->prm_sldo_mpu_setup);
		writel(2, (*prcm)->prm_sldo_mm_setup);
	}
}

static inline void enable_clock_domain(u32 const clkctrl_reg, u32 enable_mode)
{
	clrsetbits_le32(clkctrl_reg, CD_CLKCTRL_CLKTRCTRL_MASK,
			enable_mode << CD_CLKCTRL_CLKTRCTRL_SHIFT);
	debug("Enable clock domain - %x\n", clkctrl_reg);
}

static inline void wait_for_clk_enable(u32 clkctrl_addr)
{
	u32 clkctrl, idlest = MODULE_CLKCTRL_IDLEST_DISABLED;
	u32 bound = LDELAY;

	while ((idlest == MODULE_CLKCTRL_IDLEST_DISABLED) ||
		(idlest == MODULE_CLKCTRL_IDLEST_TRANSITIONING)) {

		clkctrl = readl(clkctrl_addr);
		idlest = (clkctrl & MODULE_CLKCTRL_IDLEST_MASK) >>
			 MODULE_CLKCTRL_IDLEST_SHIFT;
		if (--bound == 0) {
			printf("Clock enable failed for 0x%x idlest 0x%x\n",
				clkctrl_addr, clkctrl);
			return;
		}
	}
}

static inline void enable_clock_module(u32 const clkctrl_addr, u32 enable_mode,
				u32 wait_for_enable)
{
	clrsetbits_le32(clkctrl_addr, MODULE_CLKCTRL_MODULEMODE_MASK,
			enable_mode << MODULE_CLKCTRL_MODULEMODE_SHIFT);
	debug("Enable clock module - %x\n", clkctrl_addr);
	if (wait_for_enable)
		wait_for_clk_enable(clkctrl_addr);
}

void freq_update_core(void)
{
	u32 freq_config1 = 0;
	const struct dpll_params *core_dpll_params;
	u32 omap_rev = omap_revision();

	core_dpll_params = get_core_dpll_params(*dplls_data);
	/* Put EMIF clock domain in sw wakeup mode */
	enable_clock_domain((*prcm)->cm_memif_clkstctrl,
				CD_CLKCTRL_CLKTRCTRL_SW_WKUP);
	wait_for_clk_enable((*prcm)->cm_memif_emif_1_clkctrl);
	wait_for_clk_enable((*prcm)->cm_memif_emif_2_clkctrl);

	freq_config1 = SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK |
	    SHADOW_FREQ_CONFIG1_DLL_RESET_MASK;

	freq_config1 |= (DPLL_EN_LOCK << SHADOW_FREQ_CONFIG1_DPLL_EN_SHIFT) &
				SHADOW_FREQ_CONFIG1_DPLL_EN_MASK;

	freq_config1 |= (core_dpll_params->m2 <<
			SHADOW_FREQ_CONFIG1_M2_DIV_SHIFT) &
			SHADOW_FREQ_CONFIG1_M2_DIV_MASK;

	writel(freq_config1, (*prcm)->cm_shadow_freq_config1);
	if (!wait_on_value(SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK, 0,
			(u32 *) (*prcm)->cm_shadow_freq_config1, LDELAY)) {
		puts("FREQ UPDATE procedure failed!!");
		hang();
	}

	/*
	 * Putting EMIF in HW_AUTO is seen to be causing issues with
	 * EMIF clocks and the master DLL. Keep EMIF in SW_WKUP
	 * in OMAP5430 ES1.0 silicon
	 */
	if (omap_rev != OMAP5430_ES1_0) {
		/* Put EMIF clock domain back in hw auto mode */
		enable_clock_domain((*prcm)->cm_memif_clkstctrl,
					CD_CLKCTRL_CLKTRCTRL_HW_AUTO);
		wait_for_clk_enable((*prcm)->cm_memif_emif_1_clkctrl);
		wait_for_clk_enable((*prcm)->cm_memif_emif_2_clkctrl);
	}
}

void bypass_dpll(u32 const base)
{
	do_bypass_dpll(base);
	wait_for_bypass(base);
}

void lock_dpll(u32 const base)
{
	do_lock_dpll(base);
	wait_for_lock(base);
}

void setup_clocks_for_console(void)
{
	/* Do not add any spl_debug prints in this function */
	clrsetbits_le32((*prcm)->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK,
			CD_CLKCTRL_CLKTRCTRL_SW_WKUP <<
			CD_CLKCTRL_CLKTRCTRL_SHIFT);

	/* Enable all UARTs - console will be on one of them */
	clrsetbits_le32((*prcm)->cm_l4per_uart1_clkctrl,
			MODULE_CLKCTRL_MODULEMODE_MASK,
			MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
			MODULE_CLKCTRL_MODULEMODE_SHIFT);

	clrsetbits_le32((*prcm)->cm_l4per_uart2_clkctrl,
			MODULE_CLKCTRL_MODULEMODE_MASK,
			MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
			MODULE_CLKCTRL_MODULEMODE_SHIFT);

	clrsetbits_le32((*prcm)->cm_l4per_uart3_clkctrl,
			MODULE_CLKCTRL_MODULEMODE_MASK,
			MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
			MODULE_CLKCTRL_MODULEMODE_SHIFT);

	clrsetbits_le32((*prcm)->cm_l4per_uart4_clkctrl,
			MODULE_CLKCTRL_MODULEMODE_MASK,
			MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
			MODULE_CLKCTRL_MODULEMODE_SHIFT);

	clrsetbits_le32((*prcm)->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK,
			CD_CLKCTRL_CLKTRCTRL_HW_AUTO <<
			CD_CLKCTRL_CLKTRCTRL_SHIFT);
}

void do_enable_clocks(u32 const *clk_domains,
			    u32 const *clk_modules_hw_auto,
			    u32 const *clk_modules_explicit_en,
			    u8 wait_for_enable)
{
	u32 i, max = 100;

	/* Put the clock domains in SW_WKUP mode */
	for (i = 0; (i < max) && clk_domains[i]; i++) {
		enable_clock_domain(clk_domains[i],
				    CD_CLKCTRL_CLKTRCTRL_SW_WKUP);
	}

	/* Clock modules that need to be put in HW_AUTO */
	for (i = 0; (i < max) && clk_modules_hw_auto[i]; i++) {
		enable_clock_module(clk_modules_hw_auto[i],
				    MODULE_CLKCTRL_MODULEMODE_HW_AUTO,
				    wait_for_enable);
	};

	/* Clock modules that need to be put in SW_EXPLICIT_EN mode */
	for (i = 0; (i < max) && clk_modules_explicit_en[i]; i++) {
		enable_clock_module(clk_modules_explicit_en[i],
				    MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN,
				    wait_for_enable);
	};

	/* Put the clock domains in HW_AUTO mode now */
	for (i = 0; (i < max) && clk_domains[i]; i++) {
		enable_clock_domain(clk_domains[i],
				    CD_CLKCTRL_CLKTRCTRL_HW_AUTO);
	}
}

void prcm_init(void)
{
	switch (omap_hw_init_context()) {
	case OMAP_INIT_CONTEXT_SPL:
	case OMAP_INIT_CONTEXT_UBOOT_FROM_NOR:
	case OMAP_INIT_CONTEXT_UBOOT_AFTER_CH:
		enable_basic_clocks();
		timer_init();
		scale_vcores(*omap_vcores);
		setup_dplls();
#ifdef CONFIG_SYS_CLOCKS_ENABLE_ALL
		setup_non_essential_dplls();
		enable_non_essential_clocks();
#endif
		setup_warmreset_time();
		break;
	default:
		break;
	}

	if (OMAP_INIT_CONTEXT_SPL != omap_hw_init_context())
		enable_basic_uboot_clocks();
}

void gpi2c_init(void)
{
	static int gpi2c = 1;

	if (gpi2c) {
		i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
		gpi2c = 0;
	}
}