spd_sdram.c 10.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
/*
 * Copyright 2004 Freescale Semiconductor.
 * (C) Copyright 2003 Motorola Inc.
 * Xianghua Xiao (X.Xiao@motorola.com)
 *
 * See file CREDITS for list of people who contributed to this
 * project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */

#include <common.h>
#include <asm/processor.h>
#include <i2c.h>
#include <spd.h>
#include <asm/mmu.h>

#ifdef CONFIG_SPD_EEPROM


#if defined(CONFIG_DDR_ECC)
extern void dma_init(void);
extern uint dma_check(void);
extern int dma_xfer(void *dest, uint count, void *src);
#endif


#ifndef	CFG_READ_SPD
#define CFG_READ_SPD	i2c_read
#endif


/*
 * Convert picoseconds into clock cycles (rounding up if needed).
 */

int
picos_to_clk(int picos)
{
	int clks;

	clks = picos / (2000000000 / (get_bus_freq(0) / 1000));
	if (picos % (2000000000 / (get_bus_freq(0) / 1000)) != 0) {
		clks++;
	}

	return clks;
}


unsigned int
banksize(unsigned char row_dens)
{
	return ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24;
}


long int
spd_sdram(void)
{
	volatile immap_t *immap = (immap_t *)CFG_IMMR;
	volatile ccsr_ddr_t *ddr = &immap->im_ddr;
	volatile ccsr_local_ecm_t *ecm = &immap->im_local_ecm;
	spd_eeprom_t spd;
	unsigned tmp, tmp1;
	unsigned int memsize;
	unsigned int tlb_size;
	unsigned int law_size;
	unsigned char caslat;
	unsigned int ram_tlb_index;
	unsigned int ram_tlb_address;

	CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) & spd, sizeof (spd));

	if (spd.nrows > 2) {
		puts("DDR:Only two chip selects are supported on ADS.\n");
		return 0;
	}

	if (spd.nrow_addr < 12
	    || spd.nrow_addr > 14
	    || spd.ncol_addr < 8
	    || spd.ncol_addr > 11) {
		puts("DDR:Row or Col number unsupported.\n");
		return 0;
	}

	ddr->cs0_bnds = (banksize(spd.row_dens) >> 24) - 1;
	ddr->cs0_config = ( 1 << 31
			    | (spd.nrow_addr - 12) << 8
			    | (spd.ncol_addr - 8) );
	debug("\n");
	debug("cs0_bnds = 0x%08x\n",ddr->cs0_bnds);
	debug("cs0_config = 0x%08x\n",ddr->cs0_config);

	if (spd.nrows == 2) {
		ddr->cs1_bnds = ( (banksize(spd.row_dens) >> 8)
				  | ((banksize(spd.row_dens) >> 23) - 1) );
		ddr->cs1_config = ( 1<<31
				    | (spd.nrow_addr-12) << 8
				    | (spd.ncol_addr-8) );
		debug("cs1_bnds = 0x%08x\n",ddr->cs1_bnds);
		debug("cs1_config = 0x%08x\n",ddr->cs1_config);
	}

	if (spd.mem_type != 0x07) {
		puts("No DDR module found!\n");
		return 0;
	}

	/*
	 * Figure out memory size in Megabytes.
	 */
	memsize = spd.nrows * banksize(spd.row_dens) / 0x100000;

	/*
	 * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. Fnord.
	 */
	law_size = 19 + __ilog2(memsize);

	/*
	 * Determine size of each TLB1 entry.
	 */
	switch (memsize) {
	case 16:
	case 32:
		tlb_size = BOOKE_PAGESZ_16M;
		break;
	case 64:
	case 128:
		tlb_size = BOOKE_PAGESZ_64M;
		break;
	case 256:
	case 512:
	case 1024:
	case 2048:
		tlb_size = BOOKE_PAGESZ_256M;
		break;
	default:
		puts("DDR: only 16M,32M,64M,128M,256M,512M,1G and 2G DDR I are supported.\n");
		return 0;
		break;
	}

	/*
	 * Configure DDR TLB1 entries.
	 * Starting at TLB1 8, use no more than 8 TLB1 entries.
	 */
	ram_tlb_index = 8;
	ram_tlb_address = (unsigned int)CFG_DDR_SDRAM_BASE;
	while (ram_tlb_address < (memsize * 1024 * 1024)
	      && ram_tlb_index < 16) {
		mtspr(MAS0, TLB1_MAS0(1, ram_tlb_index, 0));
		mtspr(MAS1, TLB1_MAS1(1, 1, 0, 0, tlb_size));
		mtspr(MAS2, TLB1_MAS2(E500_TLB_EPN(ram_tlb_address),
				      0, 0, 0, 0, 0, 0, 0, 0));
		mtspr(MAS3, TLB1_MAS3(E500_TLB_RPN(ram_tlb_address),
				      0, 0, 0, 0, 0, 1, 0, 1, 0, 1));
		asm volatile("isync;msync;tlbwe;isync");

		debug("DDR:MAS0=0x%08x\n", TLB1_MAS0(1, ram_tlb_index, 0));
		debug("DDR:MAS1=0x%08x\n", TLB1_MAS1(1, 1, 0, 0, tlb_size));
		debug("DDR:MAS2=0x%08x\n",
		      TLB1_MAS2(E500_TLB_EPN(ram_tlb_address),
				0, 0, 0, 0, 0, 0, 0, 0));
		debug("DDR:MAS3=0x%08x\n",
		      TLB1_MAS3(E500_TLB_RPN(ram_tlb_address),
				0, 0, 0, 0, 0, 1, 0, 1, 0, 1));

		ram_tlb_address += (0x1000 << ((tlb_size - 1) * 2));
		ram_tlb_index++;
	}

	/*
	 * Set up LAWBAR for all of DDR.
	 */
	ecm->lawbar1 = ((CFG_DDR_SDRAM_BASE>>12) & 0xfffff);
	ecm->lawar1 = (LAWAR_EN | LAWAR_TRGT_IF_DDR | (LAWAR_SIZE & law_size));
	debug("DDR:LAWBAR1=0x%08x\n", ecm->lawbar1);
	debug("DDR:LARAR1=0x%08x\n", ecm->lawar1);

	/*
	 * find the largest CAS
	 */
	if(spd.cas_lat & 0x40) {
		caslat = 7;
	} else if (spd.cas_lat & 0x20) {
		caslat = 6;
	} else if (spd.cas_lat & 0x10) {
		caslat = 5;
	} else if (spd.cas_lat & 0x08) {
		caslat = 4;
	} else if (spd.cas_lat & 0x04) {
		caslat = 3;
	} else if (spd.cas_lat & 0x02) {
		caslat = 2;
	} else if (spd.cas_lat & 0x01) {
		caslat = 1;
	} else {
		puts("DDR:no valid CAS Latency information.\n");
		return 0;
	}

	tmp = 20000 / (((spd.clk_cycle & 0xF0) >> 4) * 10
		       + (spd.clk_cycle & 0x0f));
	debug("DDR:Module maximum data rate is: %dMhz\n", tmp);

	tmp1 = get_bus_freq(0) / 1000000;
	if (tmp1 < 230 && tmp1 >= 90 && tmp >= 230) {
		/* 90~230 range, treated as DDR 200 */
		if (spd.clk_cycle3 == 0xa0)
			caslat -= 2;
		else if(spd.clk_cycle2 == 0xa0)
			caslat--;
	} else if (tmp1 < 280 && tmp1 >= 230 && tmp >= 280) {
		/* 230-280 range, treated as DDR 266 */
		if (spd.clk_cycle3 == 0x75)
			caslat -= 2;
		else if (spd.clk_cycle2 == 0x75)
			caslat--;
	} else if (tmp1 < 350 && tmp1 >= 280 && tmp >= 350) {
		/* 280~350 range, treated as DDR 333 */
		if (spd.clk_cycle3 == 0x60)
			caslat -= 2;
		else if (spd.clk_cycle2 == 0x60)
			caslat--;
	} else if (tmp1 < 90 || tmp1 >= 350) {
		/* DDR rate out-of-range */
		puts("DDR:platform frequency is not fit for DDR rate\n");
		return 0;
	}

	/*
	 * note: caslat must also be programmed into ddr->sdram_mode
	 * register.
	 *
	 * note: WRREC(Twr) and WRTORD(Twtr) are not in SPD,
	 * use conservative value here.
	 */
	ddr->timing_cfg_1 =
	    (((picos_to_clk(spd.trp * 250) & 0x07) << 28 ) |
	     ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24 ) |
	     ((picos_to_clk(spd.trcd * 250) & 0x07) << 20 ) |
	     ((caslat & 0x07) << 16 ) |
	     (((picos_to_clk(spd.sset[6] * 1000) - 8) & 0x0f) << 12 ) |
	     ( 0x300 ) |
	     ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) | 1);

	ddr->timing_cfg_2 = 0x00000800;

	debug("DDR:timing_cfg_1=0x%08x\n", ddr->timing_cfg_1);
	debug("DDR:timing_cfg_2=0x%08x\n", ddr->timing_cfg_2);

	/*
	 * Only DDR I is supported
	 * DDR I and II have different mode-register-set definition
	 */

	/* burst length is always 4 */
	switch(caslat) {
	case 2:
		ddr->sdram_mode = 0x52; /* 1.5 */
		break;
	case 3:
		ddr->sdram_mode = 0x22; /* 2.0 */
		break;
	case 4:
		ddr->sdram_mode = 0x62; /* 2.5 */
		break;
	case 5:
		ddr->sdram_mode = 0x32; /* 3.0 */
		break;
	default:
		puts("DDR:only CAS Latency 1.5, 2.0, 2.5, 3.0 is supported.\n");
		return 0;
	}
	debug("DDR:sdram_mode=0x%08x\n", ddr->sdram_mode);

	switch(spd.refresh) {
	case 0x00:
	case 0x80:
		tmp = picos_to_clk(15625000);
		break;
	case 0x01:
	case 0x81:
		tmp = picos_to_clk(3900000);
		break;
	case 0x02:
	case 0x82:
		tmp = picos_to_clk(7800000);
		break;
	case 0x03:
	case 0x83:
		tmp = picos_to_clk(31300000);
		break;
	case 0x04:
	case 0x84:
		tmp = picos_to_clk(62500000);
		break;
	case 0x05:
	case 0x85:
		tmp = picos_to_clk(125000000);
		break;
	default:
		tmp = 0x512;
		break;
	}

	/*
	 * Set BSTOPRE to 0x100 for page mode
	 * If auto-charge is used, set BSTOPRE = 0
	 */
	ddr->sdram_interval = ((tmp & 0x3fff) << 16) | 0x100;
	debug("DDR:sdram_interval=0x%08x\n", ddr->sdram_interval);

	/*
	 * Is this an ECC DDR chip?
	 */
#if defined(CONFIG_DDR_ECC)
	if (spd.config == 0x02) {
		ddr->err_disable = 0x0000000d;
		ddr->err_sbe = 0x00ff0000;
	}
	debug("DDR:err_disable=0x%08x\n", ddr->err_disable);
	debug("DDR:err_sbe=0x%08x\n", ddr->err_sbe);
#endif
	asm("sync;isync;msync");

	udelay(500);

#ifdef MPC85xx_DDR_SDRAM_CLK_CNTL
	/* Setup the clock control (8555 and later)
	 * SDRAM_CLK_CNTL[0] = Source synchronous enable == 1
	 * SDRAM_CLK_CNTL[5-7] = Clock Adjust == 3 (3/4 cycle late)
	 */
	ddr->sdram_clk_cntl = 0x83000000;
#endif

	/*
	 * Figure out the settings for the sdram_cfg register.  Build up
	 * the entire register in 'tmp' before writing since the write into
	 * the register will actually enable the memory controller, and all
	 * settings must be done before enabling.
	 *
	 * sdram_cfg[0]   = 1 (ddr sdram logic enable)
	 * sdram_cfg[1]   = 1 (self-refresh-enable)
	 * sdram_cfg[6:7] = 2 (SDRAM type = DDR SDRAM)
	 */
	tmp = 0xc2000000;

	/*
	 * sdram_cfg[3] = RD_EN - registered DIMM enable
	 *   A value of 0x26 indicates micron registered DIMMS (micron.com)
	 */
	if (spd.mod_attr == 0x26) {
		tmp |= 0x10000000;
	}

#if defined(CONFIG_DDR_ECC)
	/*
	 * If the user wanted ECC (enabled via sdram_cfg[2])
	 */
	if (spd.config == 0x02) {
		tmp |= 0x20000000;
	}
#endif

	/*
	 * REV1 uses 1T timing.
	 * REV2 may use 1T or 2T as configured by the user.
	 */
	{
		uint pvr = get_pvr();

		if (pvr != PVR_85xx_REV1) {
#if defined(CONFIG_DDR_2T_TIMING)
			/*
			 * Enable 2T timing by setting sdram_cfg[16].
			 */
			tmp |= 0x8000;
#endif
		}
	}

	ddr->sdram_cfg = tmp;

	asm("sync;isync;msync");
	udelay(500);

	debug("DDR:sdram_cfg=0x%08x\n", ddr->sdram_cfg);

	return memsize * 1024 * 1024;
}

#endif /* CONFIG_SPD_EEPROM */


#if defined(CONFIG_DDR_ECC)
/*
 * Initialize all of memory for ECC, then enable errors.
 */

void
ddr_enable_ecc(unsigned int dram_size)
{
	uint *p = 0;
	uint i = 0;
	volatile immap_t *immap = (immap_t *)CFG_IMMR;
	volatile ccsr_ddr_t *ddr= &immap->im_ddr;

	dma_init();

	for (*p = 0; p < (uint *)(8 * 1024); p++) {
		if (((unsigned int)p & 0x1f) == 0) {
			ppcDcbz((unsigned long) p);
		}
		*p = (unsigned int)0xdeadbeef;
		if (((unsigned int)p & 0x1c) == 0x1c) {
			ppcDcbf((unsigned long) p);
		}
	}

	/* 8K */
	dma_xfer((uint *)0x2000, 0x2000, (uint *)0);
	/* 16K */
	dma_xfer((uint *)0x4000, 0x4000, (uint *)0);
	/* 32K */
	dma_xfer((uint *)0x8000, 0x8000, (uint *)0);
	/* 64K */
	dma_xfer((uint *)0x10000, 0x10000, (uint *)0);
	/* 128k */
	dma_xfer((uint *)0x20000, 0x20000, (uint *)0);
	/* 256k */
	dma_xfer((uint *)0x40000, 0x40000, (uint *)0);
	/* 512k */
	dma_xfer((uint *)0x80000, 0x80000, (uint *)0);
	/* 1M */
	dma_xfer((uint *)0x100000, 0x100000, (uint *)0);
	/* 2M */
	dma_xfer((uint *)0x200000, 0x200000, (uint *)0);
	/* 4M */
	dma_xfer((uint *)0x400000, 0x400000, (uint *)0);

	for (i = 1; i < dram_size / 0x800000; i++) {
		dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0);
	}

	/*
	 * Enable errors for ECC.
	 */
	ddr->err_disable = 0x00000000;
	asm("sync;isync;msync");
}

#endif	/* CONFIG_DDR_ECC */