cpu.c 17.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
/*
 * Copyright 2014-2015 Freescale Semiconductor, Inc.
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#include <common.h>
#include <asm/io.h>
#include <asm/errno.h>
#include <asm/system.h>
#include <asm/armv8/mmu.h>
#include <asm/io.h>
#include <asm/arch/fsl_serdes.h>
#include <asm/arch/soc.h>
#include <asm/arch/cpu.h>
#include <asm/arch/speed.h>
#ifdef CONFIG_MP
#include <asm/arch/mp.h>
#endif
#include <fm_eth.h>
#include <fsl_debug_server.h>
#include <fsl-mc/fsl_mc.h>
#ifdef CONFIG_FSL_ESDHC
#include <fsl_esdhc.h>
#endif

DECLARE_GLOBAL_DATA_PTR;

static struct mm_region layerscape_mem_map[] = {
	{
		/* List terminator */
		0,
	}
};
struct mm_region *mem_map = layerscape_mem_map;

void cpu_name(char *name)
{
	struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
	unsigned int i, svr, ver;

	svr = gur_in32(&gur->svr);
	ver = SVR_SOC_VER(svr);

	for (i = 0; i < ARRAY_SIZE(cpu_type_list); i++)
		if ((cpu_type_list[i].soc_ver & SVR_WO_E) == ver) {
			strcpy(name, cpu_type_list[i].name);

			if (IS_E_PROCESSOR(svr))
				strcat(name, "E");
			break;
		}

	if (i == ARRAY_SIZE(cpu_type_list))
		strcpy(name, "unknown");
}

#ifndef CONFIG_SYS_DCACHE_OFF
static void set_pgtable_section(u64 *page_table, u64 index, u64 section,
			u64 memory_type, u64 attribute)
{
       u64 value;

       value = section | PTE_TYPE_BLOCK | PTE_BLOCK_AF;
       value |= PMD_ATTRINDX(memory_type);
       value |= attribute;
       page_table[index] = value;
}

static void set_pgtable_table(u64 *page_table, u64 index, u64 *table_addr)
{
       u64 value;

       value = (u64)table_addr | PTE_TYPE_TABLE;
       page_table[index] = value;
}

/*
 * Set the block entries according to the information of the table.
 */
static int set_block_entry(const struct sys_mmu_table *list,
			   struct table_info *table)
{
	u64 block_size = 0, block_shift = 0;
	u64 block_addr, index;
	int j;

	if (table->entry_size == BLOCK_SIZE_L1) {
		block_size = BLOCK_SIZE_L1;
		block_shift = SECTION_SHIFT_L1;
	} else if (table->entry_size == BLOCK_SIZE_L2) {
		block_size = BLOCK_SIZE_L2;
		block_shift = SECTION_SHIFT_L2;
	} else {
		return -EINVAL;
	}

	block_addr = list->phys_addr;
	index = (list->virt_addr - table->table_base) >> block_shift;

	for (j = 0; j < (list->size >> block_shift); j++) {
		set_pgtable_section(table->ptr,
				    index,
				    block_addr,
				    list->memory_type,
				    list->attribute);
		block_addr += block_size;
		index++;
	}

	return 0;
}

/*
 * Find the corresponding table entry for the list.
 */
static int find_table(const struct sys_mmu_table *list,
		      struct table_info *table, u64 *level0_table)
{
	u64 index = 0, level = 0;
	u64 *level_table = level0_table;
	u64 temp_base = 0, block_size = 0, block_shift = 0;

	while (level < 3) {
		if (level == 0) {
			block_size = BLOCK_SIZE_L0;
			block_shift = SECTION_SHIFT_L0;
		} else if (level == 1) {
			block_size = BLOCK_SIZE_L1;
			block_shift = SECTION_SHIFT_L1;
		} else if (level == 2) {
			block_size = BLOCK_SIZE_L2;
			block_shift = SECTION_SHIFT_L2;
		}

		index = 0;
		while (list->virt_addr >= temp_base) {
			index++;
			temp_base += block_size;
		}

		temp_base -= block_size;

		if ((level_table[index - 1] & PTE_TYPE_MASK) ==
		    PTE_TYPE_TABLE) {
			level_table = (u64 *)(level_table[index - 1] &
				      ~PTE_TYPE_MASK);
			level++;
			continue;
		} else {
			if (level == 0)
				return -EINVAL;

			if ((list->phys_addr + list->size) >
			    (temp_base + block_size * NUM_OF_ENTRY))
				return -EINVAL;

			/*
			 * Check the address and size of the list member is
			 * aligned with the block size.
			 */
			if (((list->phys_addr & (block_size - 1)) != 0) ||
			    ((list->size & (block_size - 1)) != 0))
				return -EINVAL;

			table->ptr = level_table;
			table->table_base = temp_base -
					    ((index - 1) << block_shift);
			table->entry_size = block_size;

			return 0;
		}
	}
	return -EINVAL;
}

/*
 * To start MMU before DDR is available, we create MMU table in SRAM.
 * The base address of SRAM is CONFIG_SYS_FSL_OCRAM_BASE. We use three
 * levels of translation tables here to cover 40-bit address space.
 * We use 4KB granule size, with 40 bits physical address, T0SZ=24
 * Level 0 IA[39], table address @0
 * Level 1 IA[38:30], table address @0x1000, 0x2000
 * Level 2 IA[29:21], table address @0x3000, 0x4000
 * Address above 0x5000 is free for other purpose.
 */
static inline void early_mmu_setup(void)
{
	unsigned int el, i;
	u64 *level0_table = (u64 *)CONFIG_SYS_FSL_OCRAM_BASE;
	u64 *level1_table0 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x1000);
	u64 *level1_table1 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x2000);
	u64 *level2_table0 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x3000);
	u64 *level2_table1 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x4000);

	struct table_info table = {level0_table, 0, BLOCK_SIZE_L0};

	/* Invalidate all table entries */
	memset(level0_table, 0, 0x5000);

	/* Fill in the table entries */
	set_pgtable_table(level0_table, 0, level1_table0);
	set_pgtable_table(level0_table, 1, level1_table1);
	set_pgtable_table(level1_table0, 0, level2_table0);

#ifdef CONFIG_FSL_LSCH3
	set_pgtable_table(level1_table0,
			  CONFIG_SYS_FLASH_BASE >> SECTION_SHIFT_L1,
			  level2_table1);
#elif defined(CONFIG_FSL_LSCH2)
	set_pgtable_table(level1_table0, 1, level2_table1);
#endif
	/* Find the table and fill in the block entries */
	for (i = 0; i < ARRAY_SIZE(early_mmu_table); i++) {
		if (find_table(&early_mmu_table[i],
			       &table, level0_table) == 0) {
			/*
			 * If find_table() returns error, it cannot be dealt
			 * with here. Breakpoint can be added for debugging.
			 */
			set_block_entry(&early_mmu_table[i], &table);
			/*
			 * If set_block_entry() returns error, it cannot be
			 * dealt with here too.
			 */
		}
	}

	el = current_el();

	set_ttbr_tcr_mair(el, (u64)level0_table, LAYERSCAPE_TCR,
			  MEMORY_ATTRIBUTES);
	set_sctlr(get_sctlr() | CR_M);
}

#ifdef CONFIG_SYS_MEM_RESERVE_SECURE
/*
 * Called from final mmu setup. The phys_addr is new, non-existing
 * address. A new sub table is created @level2_table_secure to cover
 * size of CONFIG_SYS_MEM_RESERVE_SECURE memory.
 */
static inline int final_secure_ddr(u64 *level0_table,
				   u64 *level2_table_secure,
				   phys_addr_t phys_addr)
{
	int ret = -EINVAL;
	struct table_info table = {};
	struct sys_mmu_table ddr_entry = {
		0, 0, BLOCK_SIZE_L1, MT_NORMAL,
		PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS
	};
	u64 index;

	/* Need to create a new table */
	ddr_entry.virt_addr = phys_addr & ~(BLOCK_SIZE_L1 - 1);
	ddr_entry.phys_addr = phys_addr & ~(BLOCK_SIZE_L1 - 1);
	ret = find_table(&ddr_entry, &table, level0_table);
	if (ret)
		return ret;
	index = (ddr_entry.virt_addr - table.table_base) >> SECTION_SHIFT_L1;
	set_pgtable_table(table.ptr, index, level2_table_secure);
	table.ptr = level2_table_secure;
	table.table_base = ddr_entry.virt_addr;
	table.entry_size = BLOCK_SIZE_L2;
	ret = set_block_entry(&ddr_entry, &table);
	if (ret) {
		printf("MMU error: could not fill non-secure ddr block entries\n");
		return ret;
	}
	ddr_entry.virt_addr = phys_addr;
	ddr_entry.phys_addr = phys_addr;
	ddr_entry.size = CONFIG_SYS_MEM_RESERVE_SECURE;
	ddr_entry.attribute = PTE_BLOCK_OUTER_SHARE;
	ret = find_table(&ddr_entry, &table, level0_table);
	if (ret) {
		printf("MMU error: could not find secure ddr table\n");
		return ret;
	}
	ret = set_block_entry(&ddr_entry, &table);
	if (ret)
		printf("MMU error: could not set secure ddr block entry\n");

	return ret;
}
#endif

/*
 * The final tables look similar to early tables, but different in detail.
 * These tables are in DRAM. Sub tables are added to enable cache for
 * QBMan and OCRAM.
 *
 * Put the MMU table in secure memory if gd->arch.secure_ram is valid.
 * OCRAM will be not used for this purpose so gd->arch.secure_ram can't be 0.
 *
 * Level 1 table 0 contains 512 entries for each 1GB from 0 to 512GB.
 * Level 1 table 1 contains 512 entries for each 1GB from 512GB to 1TB.
 * Level 2 table 0 contains 512 entries for each 2MB from 0 to 1GB.
 *
 * For LSCH3:
 * Level 2 table 1 contains 512 entries for each 2MB from 32GB to 33GB.
 * For LSCH2:
 * Level 2 table 1 contains 512 entries for each 2MB from 1GB to 2GB.
 * Level 2 table 2 contains 512 entries for each 2MB from 20GB to 21GB.
 */
static inline void final_mmu_setup(void)
{
	unsigned int el = current_el();
	unsigned int i;
	u64 *level0_table = (u64 *)gd->arch.tlb_addr;
	u64 *level1_table0;
	u64 *level1_table1;
	u64 *level2_table0;
	u64 *level2_table1;
#ifdef CONFIG_FSL_LSCH2
	u64 *level2_table2;
#endif
	struct table_info table = {NULL, 0, BLOCK_SIZE_L0};

#ifdef CONFIG_SYS_MEM_RESERVE_SECURE
	u64 *level2_table_secure;

	if (el == 3) {
		/*
		 * Only use gd->arch.secure_ram if the address is recalculated
		 * Align to 4KB for MMU table
		 */
		if (gd->arch.secure_ram & MEM_RESERVE_SECURE_MAINTAINED)
			level0_table = (u64 *)(gd->arch.secure_ram & ~0xfff);
		else
			printf("MMU warning: gd->arch.secure_ram is not maintained, disabled.\n");
	}
#endif
	level1_table0 = level0_table + 512;
	level1_table1 = level1_table0 + 512;
	level2_table0 = level1_table1 + 512;
	level2_table1 = level2_table0 + 512;
#ifdef CONFIG_FSL_LSCH2
	level2_table2 = level2_table1 + 512;
#endif
	table.ptr = level0_table;

	/* Invalidate all table entries */
	memset(level0_table, 0, PGTABLE_SIZE);

	/* Fill in the table entries */
	set_pgtable_table(level0_table, 0, level1_table0);
	set_pgtable_table(level0_table, 1, level1_table1);
	set_pgtable_table(level1_table0, 0, level2_table0);
#ifdef CONFIG_FSL_LSCH3
	set_pgtable_table(level1_table0,
			  CONFIG_SYS_FSL_QBMAN_BASE >> SECTION_SHIFT_L1,
			  level2_table1);
#elif defined(CONFIG_FSL_LSCH2)
	set_pgtable_table(level1_table0, 1, level2_table1);
	set_pgtable_table(level1_table0,
			  CONFIG_SYS_FSL_QBMAN_BASE >> SECTION_SHIFT_L1,
			  level2_table2);
#endif

	/* Find the table and fill in the block entries */
	for (i = 0; i < ARRAY_SIZE(final_mmu_table); i++) {
		if (find_table(&final_mmu_table[i],
			       &table, level0_table) == 0) {
			if (set_block_entry(&final_mmu_table[i],
					    &table) != 0) {
				printf("MMU error: could not set block entry for %p\n",
				       &final_mmu_table[i]);
			}

		} else {
			printf("MMU error: could not find the table for %p\n",
			       &final_mmu_table[i]);
		}
	}
	/* Set the secure memory to secure in MMU */
#ifdef CONFIG_SYS_MEM_RESERVE_SECURE
	if (el == 3 && gd->arch.secure_ram & MEM_RESERVE_SECURE_MAINTAINED) {
#ifdef CONFIG_FSL_LSCH3
		level2_table_secure = level2_table1 + 512;
#elif defined(CONFIG_FSL_LSCH2)
		level2_table_secure = level2_table2 + 512;
#endif
		if (!final_secure_ddr(level0_table,
				      level2_table_secure,
				      gd->arch.secure_ram & ~0x3)) {
			gd->arch.secure_ram |= MEM_RESERVE_SECURE_SECURED;
			debug("Now MMU table is in secured memory at 0x%llx\n",
			      gd->arch.secure_ram & ~0x3);
		} else {
			printf("MMU warning: Failed to secure DDR\n");
		}
	}
#endif

	/* flush new MMU table */
	flush_dcache_range((ulong)level0_table,
			   (ulong)level0_table + gd->arch.tlb_size);

	/* point TTBR to the new table */
	set_ttbr_tcr_mair(el, (u64)level0_table, LAYERSCAPE_TCR_FINAL,
			  MEMORY_ATTRIBUTES);
	/*
	 * MMU is already enabled, just need to invalidate TLB to load the
	 * new table. The new table is compatible with the current table, if
	 * MMU somehow walks through the new table before invalidation TLB,
	 * it still works. So we don't need to turn off MMU here.
	 */
}

u64 get_page_table_size(void)
{
	return 0x10000;
}

int arch_cpu_init(void)
{
	icache_enable();
	__asm_invalidate_dcache_all();
	__asm_invalidate_tlb_all();
	early_mmu_setup();
	set_sctlr(get_sctlr() | CR_C);
	return 0;
}

/*
 * This function is called from lib/board.c.
 * It recreates MMU table in main memory. MMU and d-cache are enabled earlier.
 * There is no need to disable d-cache for this operation.
 */
void enable_caches(void)
{
	final_mmu_setup();
	__asm_invalidate_tlb_all();
}
#endif

static inline u32 initiator_type(u32 cluster, int init_id)
{
	struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
	u32 idx = (cluster >> (init_id * 8)) & TP_CLUSTER_INIT_MASK;
	u32 type = 0;

	type = gur_in32(&gur->tp_ityp[idx]);
	if (type & TP_ITYP_AV)
		return type;

	return 0;
}

u32 cpu_mask(void)
{
	struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
	int i = 0, count = 0;
	u32 cluster, type, mask = 0;

	do {
		int j;

		cluster = gur_in32(&gur->tp_cluster[i].lower);
		for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
			type = initiator_type(cluster, j);
			if (type) {
				if (TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM)
					mask |= 1 << count;
				count++;
			}
		}
		i++;
	} while ((cluster & TP_CLUSTER_EOC) == 0x0);

	return mask;
}

/*
 * Return the number of cores on this SOC.
 */
int cpu_numcores(void)
{
	return hweight32(cpu_mask());
}

int fsl_qoriq_core_to_cluster(unsigned int core)
{
	struct ccsr_gur __iomem *gur =
		(void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
	int i = 0, count = 0;
	u32 cluster;

	do {
		int j;

		cluster = gur_in32(&gur->tp_cluster[i].lower);
		for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
			if (initiator_type(cluster, j)) {
				if (count == core)
					return i;
				count++;
			}
		}
		i++;
	} while ((cluster & TP_CLUSTER_EOC) == 0x0);

	return -1;      /* cannot identify the cluster */
}

u32 fsl_qoriq_core_to_type(unsigned int core)
{
	struct ccsr_gur __iomem *gur =
		(void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
	int i = 0, count = 0;
	u32 cluster, type;

	do {
		int j;

		cluster = gur_in32(&gur->tp_cluster[i].lower);
		for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
			type = initiator_type(cluster, j);
			if (type) {
				if (count == core)
					return type;
				count++;
			}
		}
		i++;
	} while ((cluster & TP_CLUSTER_EOC) == 0x0);

	return -1;      /* cannot identify the cluster */
}

uint get_svr(void)
{
	struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);

	return gur_in32(&gur->svr);
}

#ifdef CONFIG_DISPLAY_CPUINFO
int print_cpuinfo(void)
{
	struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
	struct sys_info sysinfo;
	char buf[32];
	unsigned int i, core;
	u32 type, rcw, svr = gur_in32(&gur->svr);

	puts("SoC: ");

	cpu_name(buf);
	printf(" %s (0x%x)\n", buf, svr);
	memset((u8 *)buf, 0x00, ARRAY_SIZE(buf));
	get_sys_info(&sysinfo);
	puts("Clock Configuration:");
	for_each_cpu(i, core, cpu_numcores(), cpu_mask()) {
		if (!(i % 3))
			puts("\n       ");
		type = TP_ITYP_VER(fsl_qoriq_core_to_type(core));
		printf("CPU%d(%s):%-4s MHz  ", core,
		       type == TY_ITYP_VER_A7 ? "A7 " :
		       (type == TY_ITYP_VER_A53 ? "A53" :
			(type == TY_ITYP_VER_A57 ? "A57" : "   ")),
		       strmhz(buf, sysinfo.freq_processor[core]));
	}
	printf("\n       Bus:      %-4s MHz  ",
	       strmhz(buf, sysinfo.freq_systembus));
	printf("DDR:      %-4s MT/s", strmhz(buf, sysinfo.freq_ddrbus));
#ifdef CONFIG_SYS_DPAA_FMAN
	printf("  FMAN:     %-4s MHz", strmhz(buf, sysinfo.freq_fman[0]));
#endif
#ifdef CONFIG_SYS_FSL_HAS_DP_DDR
	if (soc_has_dp_ddr()) {
		printf("     DP-DDR:   %-4s MT/s",
		       strmhz(buf, sysinfo.freq_ddrbus2));
	}
#endif
	puts("\n");

	/*
	 * Display the RCW, so that no one gets confused as to what RCW
	 * we're actually using for this boot.
	 */
	puts("Reset Configuration Word (RCW):");
	for (i = 0; i < ARRAY_SIZE(gur->rcwsr); i++) {
		rcw = gur_in32(&gur->rcwsr[i]);
		if ((i % 4) == 0)
			printf("\n       %08x:", i * 4);
		printf(" %08x", rcw);
	}
	puts("\n");

	return 0;
}
#endif

#ifdef CONFIG_FSL_ESDHC
int cpu_mmc_init(bd_t *bis)
{
	return fsl_esdhc_mmc_init(bis);
}
#endif

int cpu_eth_init(bd_t *bis)
{
	int error = 0;

#ifdef CONFIG_FSL_MC_ENET
	error = fsl_mc_ldpaa_init(bis);
#endif
#ifdef CONFIG_FMAN_ENET
	fm_standard_init(bis);
#endif
	return error;
}

int arch_early_init_r(void)
{
#ifdef CONFIG_MP
	int rv = 1;
#endif

#ifdef CONFIG_SYS_FSL_ERRATUM_A009635
	erratum_a009635();
#endif

#ifdef CONFIG_MP
	rv = fsl_layerscape_wake_seconday_cores();
	if (rv)
		printf("Did not wake secondary cores\n");
#endif

#ifdef CONFIG_SYS_HAS_SERDES
	fsl_serdes_init();
#endif
#ifdef CONFIG_FMAN_ENET
	fman_enet_init();
#endif
	return 0;
}

int timer_init(void)
{
	u32 __iomem *cntcr = (u32 *)CONFIG_SYS_FSL_TIMER_ADDR;
#ifdef CONFIG_FSL_LSCH3
	u32 __iomem *cltbenr = (u32 *)CONFIG_SYS_FSL_PMU_CLTBENR;
#endif
#ifdef CONFIG_LS2080A
	u32 __iomem *pctbenr = (u32 *)FSL_PMU_PCTBENR_OFFSET;
#endif
#ifdef COUNTER_FREQUENCY_REAL
	unsigned long cntfrq = COUNTER_FREQUENCY_REAL;

	/* Update with accurate clock frequency */
	asm volatile("msr cntfrq_el0, %0" : : "r" (cntfrq) : "memory");
#endif

#ifdef CONFIG_FSL_LSCH3
	/* Enable timebase for all clusters.
	 * It is safe to do so even some clusters are not enabled.
	 */
	out_le32(cltbenr, 0xf);
#endif

#ifdef CONFIG_LS2080A
	/*
	 * In certain Layerscape SoCs, the clock for each core's
	 * has an enable bit in the PMU Physical Core Time Base Enable
	 * Register (PCTBENR), which allows the watchdog to operate.
	 */
	setbits_le32(pctbenr, 0xff);
#endif

	/* Enable clock for timer
	 * This is a global setting.
	 */
	out_le32(cntcr, 0x1);

	return 0;
}

void reset_cpu(ulong addr)
{
	u32 __iomem *rstcr = (u32 *)CONFIG_SYS_FSL_RST_ADDR;
	u32 val;

	/* Raise RESET_REQ_B */
	val = scfg_in32(rstcr);
	val |= 0x02;
	scfg_out32(rstcr, val);
}

phys_size_t board_reserve_ram_top(phys_size_t ram_size)
{
	phys_size_t ram_top = ram_size;

#ifdef CONFIG_SYS_MEM_TOP_HIDE
#error CONFIG_SYS_MEM_TOP_HIDE not to be used together with this function
#endif
/* Carve the Debug Server private DRAM block from the end of DRAM */
#ifdef CONFIG_FSL_DEBUG_SERVER
	ram_top -= debug_server_get_dram_block_size();
#endif

/* Carve the MC private DRAM block from the end of DRAM */
#ifdef CONFIG_FSL_MC_ENET
	ram_top -= mc_get_dram_block_size();
	ram_top &= ~(CONFIG_SYS_MC_RSV_MEM_ALIGN - 1);
#endif

	return ram_top;
}