Commit 0d4e85098044d3ea2f7b41525acdf2254a88997f

Authored by Marek Vasut
Committed by Stefano Babic
1 parent 31650d64a8

iMX28: Add GPMI NAND driver

Signed-off-by: Marek Vasut <marek.vasut@gmail.com>
Cc: Scott Wood <scottwood@freescale.com>
Cc: Stefano Babic <sbabic@denx.de>
Cc: Wolfgang Denk <wd@denx.de>
Cc: Detlev Zundel <dzu@denx.de>

Showing 2 changed files with 1119 additions and 0 deletions Side-by-side Diff

drivers/mtd/nand/Makefile
... ... @@ -54,6 +54,7 @@
54 54 COBJS-$(CONFIG_NAND_KMETER1) += kmeter1_nand.o
55 55 COBJS-$(CONFIG_NAND_MPC5121_NFC) += mpc5121_nfc.o
56 56 COBJS-$(CONFIG_NAND_MXC) += mxc_nand.o
  57 +COBJS-$(CONFIG_NAND_MXS) += mxs_nand.o
57 58 COBJS-$(CONFIG_NAND_NDFC) += ndfc.o
58 59 COBJS-$(CONFIG_NAND_NOMADIK) += nomadik.o
59 60 COBJS-$(CONFIG_NAND_S3C2410) += s3c2410_nand.o
drivers/mtd/nand/mxs_nand.c
Changes suppressed. Click to show
  1 +/*
  2 + * Freescale i.MX28 NAND flash driver
  3 + *
  4 + * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
  5 + * on behalf of DENX Software Engineering GmbH
  6 + *
  7 + * Based on code from LTIB:
  8 + * Freescale GPMI NFC NAND Flash Driver
  9 + *
  10 + * Copyright (C) 2010 Freescale Semiconductor, Inc.
  11 + * Copyright (C) 2008 Embedded Alley Solutions, Inc.
  12 + *
  13 + * This program is free software; you can redistribute it and/or modify
  14 + * it under the terms of the GNU General Public License as published by
  15 + * the Free Software Foundation; either version 2 of the License, or
  16 + * (at your option) any later version.
  17 + *
  18 + * This program is distributed in the hope that it will be useful,
  19 + * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20 + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  21 + * GNU General Public License for more details.
  22 + *
  23 + * You should have received a copy of the GNU General Public License along
  24 + * with this program; if not, write to the Free Software Foundation, Inc.,
  25 + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  26 + */
  27 +
  28 +#include <linux/mtd/mtd.h>
  29 +#include <linux/mtd/nand.h>
  30 +#include <linux/types.h>
  31 +#include <common.h>
  32 +#include <malloc.h>
  33 +#include <asm/errno.h>
  34 +#include <asm/io.h>
  35 +#include <asm/arch/clock.h>
  36 +#include <asm/arch/imx-regs.h>
  37 +#include <asm/arch/sys_proto.h>
  38 +#include <asm/arch/dma.h>
  39 +
  40 +#define MXS_NAND_DMA_DESCRIPTOR_COUNT 4
  41 +
  42 +#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE 512
  43 +#define MXS_NAND_METADATA_SIZE 10
  44 +
  45 +#define MXS_NAND_COMMAND_BUFFER_SIZE 32
  46 +
  47 +#define MXS_NAND_BCH_TIMEOUT 10000
  48 +
  49 +struct mxs_nand_info {
  50 + int cur_chip;
  51 +
  52 + uint32_t cmd_queue_len;
  53 +
  54 + uint8_t *cmd_buf;
  55 + uint8_t *data_buf;
  56 + uint8_t *oob_buf;
  57 +
  58 + uint8_t marking_block_bad;
  59 + uint8_t raw_oob_mode;
  60 +
  61 + /* Functions with altered behaviour */
  62 + int (*hooked_read_oob)(struct mtd_info *mtd,
  63 + loff_t from, struct mtd_oob_ops *ops);
  64 + int (*hooked_write_oob)(struct mtd_info *mtd,
  65 + loff_t to, struct mtd_oob_ops *ops);
  66 + int (*hooked_block_markbad)(struct mtd_info *mtd,
  67 + loff_t ofs);
  68 +
  69 + /* DMA descriptors */
  70 + struct mxs_dma_desc **desc;
  71 + uint32_t desc_index;
  72 +};
  73 +
  74 +struct nand_ecclayout fake_ecc_layout;
  75 +
  76 +static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
  77 +{
  78 + struct mxs_dma_desc *desc;
  79 +
  80 + if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
  81 + printf("MXS NAND: Too many DMA descriptors requested\n");
  82 + return NULL;
  83 + }
  84 +
  85 + desc = info->desc[info->desc_index];
  86 + info->desc_index++;
  87 +
  88 + return desc;
  89 +}
  90 +
  91 +static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
  92 +{
  93 + int i;
  94 + struct mxs_dma_desc *desc;
  95 +
  96 + for (i = 0; i < info->desc_index; i++) {
  97 + desc = info->desc[i];
  98 + memset(desc, 0, sizeof(struct mxs_dma_desc));
  99 + desc->address = (dma_addr_t)desc;
  100 + }
  101 +
  102 + info->desc_index = 0;
  103 +}
  104 +
  105 +static uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size)
  106 +{
  107 + return page_data_size / MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
  108 +}
  109 +
  110 +static uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength)
  111 +{
  112 + return ecc_strength * 13;
  113 +}
  114 +
  115 +static uint32_t mxs_nand_aux_status_offset(void)
  116 +{
  117 + return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
  118 +}
  119 +
  120 +static inline uint32_t mxs_nand_get_ecc_strength(uint32_t page_data_size,
  121 + uint32_t page_oob_size)
  122 +{
  123 + if (page_data_size == 2048)
  124 + return 8;
  125 +
  126 + if (page_data_size == 4096) {
  127 + if (page_oob_size == 128)
  128 + return 8;
  129 +
  130 + if (page_oob_size == 218)
  131 + return 16;
  132 + }
  133 +
  134 + return 0;
  135 +}
  136 +
  137 +static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size,
  138 + uint32_t ecc_strength)
  139 +{
  140 + uint32_t chunk_data_size_in_bits;
  141 + uint32_t chunk_ecc_size_in_bits;
  142 + uint32_t chunk_total_size_in_bits;
  143 + uint32_t block_mark_chunk_number;
  144 + uint32_t block_mark_chunk_bit_offset;
  145 + uint32_t block_mark_bit_offset;
  146 +
  147 + chunk_data_size_in_bits = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 8;
  148 + chunk_ecc_size_in_bits = mxs_nand_ecc_size_in_bits(ecc_strength);
  149 +
  150 + chunk_total_size_in_bits =
  151 + chunk_data_size_in_bits + chunk_ecc_size_in_bits;
  152 +
  153 + /* Compute the bit offset of the block mark within the physical page. */
  154 + block_mark_bit_offset = page_data_size * 8;
  155 +
  156 + /* Subtract the metadata bits. */
  157 + block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;
  158 +
  159 + /*
  160 + * Compute the chunk number (starting at zero) in which the block mark
  161 + * appears.
  162 + */
  163 + block_mark_chunk_number =
  164 + block_mark_bit_offset / chunk_total_size_in_bits;
  165 +
  166 + /*
  167 + * Compute the bit offset of the block mark within its chunk, and
  168 + * validate it.
  169 + */
  170 + block_mark_chunk_bit_offset = block_mark_bit_offset -
  171 + (block_mark_chunk_number * chunk_total_size_in_bits);
  172 +
  173 + if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
  174 + return 1;
  175 +
  176 + /*
  177 + * Now that we know the chunk number in which the block mark appears,
  178 + * we can subtract all the ECC bits that appear before it.
  179 + */
  180 + block_mark_bit_offset -=
  181 + block_mark_chunk_number * chunk_ecc_size_in_bits;
  182 +
  183 + return block_mark_bit_offset;
  184 +}
  185 +
  186 +static uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd)
  187 +{
  188 + uint32_t ecc_strength;
  189 + ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
  190 + return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3;
  191 +}
  192 +
  193 +static uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd)
  194 +{
  195 + uint32_t ecc_strength;
  196 + ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
  197 + return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7;
  198 +}
  199 +
  200 +/*
  201 + * Wait for BCH complete IRQ and clear the IRQ
  202 + */
  203 +static int mxs_nand_wait_for_bch_complete(void)
  204 +{
  205 + struct mx28_bch_regs *bch_regs = (struct mx28_bch_regs *)MXS_BCH_BASE;
  206 + int timeout = MXS_NAND_BCH_TIMEOUT;
  207 + int ret;
  208 +
  209 + ret = mx28_wait_mask_set(&bch_regs->hw_bch_ctrl_reg,
  210 + BCH_CTRL_COMPLETE_IRQ, timeout);
  211 +
  212 + writel(BCH_CTRL_COMPLETE_IRQ, &bch_regs->hw_bch_ctrl_clr);
  213 +
  214 + return ret;
  215 +}
  216 +
  217 +/*
  218 + * This is the function that we install in the cmd_ctrl function pointer of the
  219 + * owning struct nand_chip. The only functions in the reference implementation
  220 + * that use these functions pointers are cmdfunc and select_chip.
  221 + *
  222 + * In this driver, we implement our own select_chip, so this function will only
  223 + * be called by the reference implementation's cmdfunc. For this reason, we can
  224 + * ignore the chip enable bit and concentrate only on sending bytes to the NAND
  225 + * Flash.
  226 + */
  227 +static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
  228 +{
  229 + struct nand_chip *nand = mtd->priv;
  230 + struct mxs_nand_info *nand_info = nand->priv;
  231 + struct mxs_dma_desc *d;
  232 + uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
  233 + int ret;
  234 +
  235 + /*
  236 + * If this condition is true, something is _VERY_ wrong in MTD
  237 + * subsystem!
  238 + */
  239 + if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
  240 + printf("MXS NAND: Command queue too long\n");
  241 + return;
  242 + }
  243 +
  244 + /*
  245 + * Every operation begins with a command byte and a series of zero or
  246 + * more address bytes. These are distinguished by either the Address
  247 + * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
  248 + * asserted. When MTD is ready to execute the command, it will
  249 + * deasert both latch enables.
  250 + *
  251 + * Rather than run a separate DMA operation for every single byte, we
  252 + * queue them up and run a single DMA operation for the entire series
  253 + * of command and data bytes.
  254 + */
  255 + if (ctrl & (NAND_ALE | NAND_CLE)) {
  256 + if (data != NAND_CMD_NONE)
  257 + nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
  258 + return;
  259 + }
  260 +
  261 + /*
  262 + * If control arrives here, MTD has deasserted both the ALE and CLE,
  263 + * which means it's ready to run an operation. Check if we have any
  264 + * bytes to send.
  265 + */
  266 + if (nand_info->cmd_queue_len == 0)
  267 + return;
  268 +
  269 + /* Compile the DMA descriptor -- a descriptor that sends command. */
  270 + d = mxs_nand_get_dma_desc(nand_info);
  271 + d->cmd.data =
  272 + MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
  273 + MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
  274 + MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
  275 + (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);
  276 +
  277 + d->cmd.address = (dma_addr_t)nand_info->cmd_buf;
  278 +
  279 + d->cmd.pio_words[0] =
  280 + GPMI_CTRL0_COMMAND_MODE_WRITE |
  281 + GPMI_CTRL0_WORD_LENGTH |
  282 + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
  283 + GPMI_CTRL0_ADDRESS_NAND_CLE |
  284 + GPMI_CTRL0_ADDRESS_INCREMENT |
  285 + nand_info->cmd_queue_len;
  286 +
  287 + mxs_dma_desc_append(channel, d);
  288 +
  289 + /* Execute the DMA chain. */
  290 + ret = mxs_dma_go(channel);
  291 + if (ret)
  292 + printf("MXS NAND: Error sending command\n");
  293 +
  294 + mxs_nand_return_dma_descs(nand_info);
  295 +
  296 + /* Reset the command queue. */
  297 + nand_info->cmd_queue_len = 0;
  298 +}
  299 +
  300 +/*
  301 + * Test if the NAND flash is ready.
  302 + */
  303 +static int mxs_nand_device_ready(struct mtd_info *mtd)
  304 +{
  305 + struct nand_chip *chip = mtd->priv;
  306 + struct mxs_nand_info *nand_info = chip->priv;
  307 + struct mx28_gpmi_regs *gpmi_regs =
  308 + (struct mx28_gpmi_regs *)MXS_GPMI_BASE;
  309 + uint32_t tmp;
  310 +
  311 + tmp = readl(&gpmi_regs->hw_gpmi_stat);
  312 + tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);
  313 +
  314 + return tmp & 1;
  315 +}
  316 +
  317 +/*
  318 + * Select the NAND chip.
  319 + */
  320 +static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
  321 +{
  322 + struct nand_chip *nand = mtd->priv;
  323 + struct mxs_nand_info *nand_info = nand->priv;
  324 +
  325 + nand_info->cur_chip = chip;
  326 +}
  327 +
  328 +/*
  329 + * Handle block mark swapping.
  330 + *
  331 + * Note that, when this function is called, it doesn't know whether it's
  332 + * swapping the block mark, or swapping it *back* -- but it doesn't matter
  333 + * because the the operation is the same.
  334 + */
  335 +static void mxs_nand_swap_block_mark(struct mtd_info *mtd,
  336 + uint8_t *data_buf, uint8_t *oob_buf)
  337 +{
  338 + uint32_t bit_offset;
  339 + uint32_t buf_offset;
  340 +
  341 + uint32_t src;
  342 + uint32_t dst;
  343 +
  344 + bit_offset = mxs_nand_mark_bit_offset(mtd);
  345 + buf_offset = mxs_nand_mark_byte_offset(mtd);
  346 +
  347 + /*
  348 + * Get the byte from the data area that overlays the block mark. Since
  349 + * the ECC engine applies its own view to the bits in the page, the
  350 + * physical block mark won't (in general) appear on a byte boundary in
  351 + * the data.
  352 + */
  353 + src = data_buf[buf_offset] >> bit_offset;
  354 + src |= data_buf[buf_offset + 1] << (8 - bit_offset);
  355 +
  356 + dst = oob_buf[0];
  357 +
  358 + oob_buf[0] = src;
  359 +
  360 + data_buf[buf_offset] &= ~(0xff << bit_offset);
  361 + data_buf[buf_offset + 1] &= 0xff << bit_offset;
  362 +
  363 + data_buf[buf_offset] |= dst << bit_offset;
  364 + data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
  365 +}
  366 +
  367 +/*
  368 + * Read data from NAND.
  369 + */
  370 +static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
  371 +{
  372 + struct nand_chip *nand = mtd->priv;
  373 + struct mxs_nand_info *nand_info = nand->priv;
  374 + struct mxs_dma_desc *d;
  375 + uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
  376 + int ret;
  377 +
  378 + if (length > NAND_MAX_PAGESIZE) {
  379 + printf("MXS NAND: DMA buffer too big\n");
  380 + return;
  381 + }
  382 +
  383 + if (!buf) {
  384 + printf("MXS NAND: DMA buffer is NULL\n");
  385 + return;
  386 + }
  387 +
  388 + /* Compile the DMA descriptor - a descriptor that reads data. */
  389 + d = mxs_nand_get_dma_desc(nand_info);
  390 + d->cmd.data =
  391 + MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
  392 + MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
  393 + (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
  394 + (length << MXS_DMA_DESC_BYTES_OFFSET);
  395 +
  396 + d->cmd.address = (dma_addr_t)nand_info->data_buf;
  397 +
  398 + d->cmd.pio_words[0] =
  399 + GPMI_CTRL0_COMMAND_MODE_READ |
  400 + GPMI_CTRL0_WORD_LENGTH |
  401 + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
  402 + GPMI_CTRL0_ADDRESS_NAND_DATA |
  403 + length;
  404 +
  405 + mxs_dma_desc_append(channel, d);
  406 +
  407 + /*
  408 + * A DMA descriptor that waits for the command to end and the chip to
  409 + * become ready.
  410 + *
  411 + * I think we actually should *not* be waiting for the chip to become
  412 + * ready because, after all, we don't care. I think the original code
  413 + * did that and no one has re-thought it yet.
  414 + */
  415 + d = mxs_nand_get_dma_desc(nand_info);
  416 + d->cmd.data =
  417 + MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
  418 + MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
  419 + MXS_DMA_DESC_WAIT4END | (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
  420 +
  421 + d->cmd.address = 0;
  422 +
  423 + d->cmd.pio_words[0] =
  424 + GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
  425 + GPMI_CTRL0_WORD_LENGTH |
  426 + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
  427 + GPMI_CTRL0_ADDRESS_NAND_DATA;
  428 +
  429 + mxs_dma_desc_append(channel, d);
  430 +
  431 + /* Execute the DMA chain. */
  432 + ret = mxs_dma_go(channel);
  433 + if (ret) {
  434 + printf("MXS NAND: DMA read error\n");
  435 + goto rtn;
  436 + }
  437 +
  438 + memcpy(buf, nand_info->data_buf, length);
  439 +
  440 +rtn:
  441 + mxs_nand_return_dma_descs(nand_info);
  442 +}
  443 +
  444 +/*
  445 + * Write data to NAND.
  446 + */
  447 +static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
  448 + int length)
  449 +{
  450 + struct nand_chip *nand = mtd->priv;
  451 + struct mxs_nand_info *nand_info = nand->priv;
  452 + struct mxs_dma_desc *d;
  453 + uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
  454 + int ret;
  455 +
  456 + if (length > NAND_MAX_PAGESIZE) {
  457 + printf("MXS NAND: DMA buffer too big\n");
  458 + return;
  459 + }
  460 +
  461 + if (!buf) {
  462 + printf("MXS NAND: DMA buffer is NULL\n");
  463 + return;
  464 + }
  465 +
  466 + memcpy(nand_info->data_buf, buf, length);
  467 +
  468 + /* Compile the DMA descriptor - a descriptor that writes data. */
  469 + d = mxs_nand_get_dma_desc(nand_info);
  470 + d->cmd.data =
  471 + MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
  472 + MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
  473 + (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
  474 + (length << MXS_DMA_DESC_BYTES_OFFSET);
  475 +
  476 + d->cmd.address = (dma_addr_t)nand_info->data_buf;
  477 +
  478 + d->cmd.pio_words[0] =
  479 + GPMI_CTRL0_COMMAND_MODE_WRITE |
  480 + GPMI_CTRL0_WORD_LENGTH |
  481 + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
  482 + GPMI_CTRL0_ADDRESS_NAND_DATA |
  483 + length;
  484 +
  485 + mxs_dma_desc_append(channel, d);
  486 +
  487 + /* Execute the DMA chain. */
  488 + ret = mxs_dma_go(channel);
  489 + if (ret)
  490 + printf("MXS NAND: DMA write error\n");
  491 +
  492 + mxs_nand_return_dma_descs(nand_info);
  493 +}
  494 +
  495 +/*
  496 + * Read a single byte from NAND.
  497 + */
  498 +static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
  499 +{
  500 + uint8_t buf;
  501 + mxs_nand_read_buf(mtd, &buf, 1);
  502 + return buf;
  503 +}
  504 +
  505 +/*
  506 + * Read a page from NAND.
  507 + */
  508 +static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
  509 + uint8_t *buf, int page)
  510 +{
  511 + struct mxs_nand_info *nand_info = nand->priv;
  512 + struct mxs_dma_desc *d;
  513 + uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
  514 + uint32_t corrected = 0, failed = 0;
  515 + uint8_t *status;
  516 + int i, ret;
  517 +
  518 + /* Compile the DMA descriptor - wait for ready. */
  519 + d = mxs_nand_get_dma_desc(nand_info);
  520 + d->cmd.data =
  521 + MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
  522 + MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
  523 + (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
  524 +
  525 + d->cmd.address = 0;
  526 +
  527 + d->cmd.pio_words[0] =
  528 + GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
  529 + GPMI_CTRL0_WORD_LENGTH |
  530 + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
  531 + GPMI_CTRL0_ADDRESS_NAND_DATA;
  532 +
  533 + mxs_dma_desc_append(channel, d);
  534 +
  535 + /* Compile the DMA descriptor - enable the BCH block and read. */
  536 + d = mxs_nand_get_dma_desc(nand_info);
  537 + d->cmd.data =
  538 + MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
  539 + MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
  540 +
  541 + d->cmd.address = 0;
  542 +
  543 + d->cmd.pio_words[0] =
  544 + GPMI_CTRL0_COMMAND_MODE_READ |
  545 + GPMI_CTRL0_WORD_LENGTH |
  546 + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
  547 + GPMI_CTRL0_ADDRESS_NAND_DATA |
  548 + (mtd->writesize + mtd->oobsize);
  549 + d->cmd.pio_words[1] = 0;
  550 + d->cmd.pio_words[2] =
  551 + GPMI_ECCCTRL_ENABLE_ECC |
  552 + GPMI_ECCCTRL_ECC_CMD_DECODE |
  553 + GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
  554 + d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
  555 + d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
  556 + d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
  557 +
  558 + mxs_dma_desc_append(channel, d);
  559 +
  560 + /* Compile the DMA descriptor - disable the BCH block. */
  561 + d = mxs_nand_get_dma_desc(nand_info);
  562 + d->cmd.data =
  563 + MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
  564 + MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
  565 + (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
  566 +
  567 + d->cmd.address = 0;
  568 +
  569 + d->cmd.pio_words[0] =
  570 + GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
  571 + GPMI_CTRL0_WORD_LENGTH |
  572 + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
  573 + GPMI_CTRL0_ADDRESS_NAND_DATA |
  574 + (mtd->writesize + mtd->oobsize);
  575 + d->cmd.pio_words[1] = 0;
  576 + d->cmd.pio_words[2] = 0;
  577 +
  578 + mxs_dma_desc_append(channel, d);
  579 +
  580 + /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
  581 + d = mxs_nand_get_dma_desc(nand_info);
  582 + d->cmd.data =
  583 + MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
  584 + MXS_DMA_DESC_DEC_SEM;
  585 +
  586 + d->cmd.address = 0;
  587 +
  588 + mxs_dma_desc_append(channel, d);
  589 +
  590 + /* Execute the DMA chain. */
  591 + ret = mxs_dma_go(channel);
  592 + if (ret) {
  593 + printf("MXS NAND: DMA read error\n");
  594 + goto rtn;
  595 + }
  596 +
  597 + ret = mxs_nand_wait_for_bch_complete();
  598 + if (ret) {
  599 + printf("MXS NAND: BCH read timeout\n");
  600 + goto rtn;
  601 + }
  602 +
  603 + /* Read DMA completed, now do the mark swapping. */
  604 + mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
  605 +
  606 + /* Loop over status bytes, accumulating ECC status. */
  607 + status = nand_info->oob_buf + mxs_nand_aux_status_offset();
  608 + for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) {
  609 + if (status[i] == 0x00)
  610 + continue;
  611 +
  612 + if (status[i] == 0xff)
  613 + continue;
  614 +
  615 + if (status[i] == 0xfe) {
  616 + failed++;
  617 + continue;
  618 + }
  619 +
  620 + corrected += status[i];
  621 + }
  622 +
  623 + /* Propagate ECC status to the owning MTD. */
  624 + mtd->ecc_stats.failed += failed;
  625 + mtd->ecc_stats.corrected += corrected;
  626 +
  627 + /*
  628 + * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
  629 + * details about our policy for delivering the OOB.
  630 + *
  631 + * We fill the caller's buffer with set bits, and then copy the block
  632 + * mark to the caller's buffer. Note that, if block mark swapping was
  633 + * necessary, it has already been done, so we can rely on the first
  634 + * byte of the auxiliary buffer to contain the block mark.
  635 + */
  636 + memset(nand->oob_poi, 0xff, mtd->oobsize);
  637 +
  638 + nand->oob_poi[0] = nand_info->oob_buf[0];
  639 +
  640 + memcpy(buf, nand_info->data_buf, mtd->writesize);
  641 +
  642 +rtn:
  643 + mxs_nand_return_dma_descs(nand_info);
  644 +
  645 + return ret;
  646 +}
  647 +
  648 +/*
  649 + * Write a page to NAND.
  650 + */
  651 +static void mxs_nand_ecc_write_page(struct mtd_info *mtd,
  652 + struct nand_chip *nand, const uint8_t *buf)
  653 +{
  654 + struct mxs_nand_info *nand_info = nand->priv;
  655 + struct mxs_dma_desc *d;
  656 + uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
  657 + int ret;
  658 +
  659 + memcpy(nand_info->data_buf, buf, mtd->writesize);
  660 + memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);
  661 +
  662 + /* Handle block mark swapping. */
  663 + mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
  664 +
  665 + /* Compile the DMA descriptor - write data. */
  666 + d = mxs_nand_get_dma_desc(nand_info);
  667 + d->cmd.data =
  668 + MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
  669 + MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
  670 + (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
  671 +
  672 + d->cmd.address = 0;
  673 +
  674 + d->cmd.pio_words[0] =
  675 + GPMI_CTRL0_COMMAND_MODE_WRITE |
  676 + GPMI_CTRL0_WORD_LENGTH |
  677 + (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
  678 + GPMI_CTRL0_ADDRESS_NAND_DATA;
  679 + d->cmd.pio_words[1] = 0;
  680 + d->cmd.pio_words[2] =
  681 + GPMI_ECCCTRL_ENABLE_ECC |
  682 + GPMI_ECCCTRL_ECC_CMD_ENCODE |
  683 + GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
  684 + d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
  685 + d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
  686 + d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
  687 +
  688 + mxs_dma_desc_append(channel, d);
  689 +
  690 + /* Execute the DMA chain. */
  691 + ret = mxs_dma_go(channel);
  692 + if (ret) {
  693 + printf("MXS NAND: DMA write error\n");
  694 + goto rtn;
  695 + }
  696 +
  697 + ret = mxs_nand_wait_for_bch_complete();
  698 + if (ret) {
  699 + printf("MXS NAND: BCH write timeout\n");
  700 + goto rtn;
  701 + }
  702 +
  703 +rtn:
  704 + mxs_nand_return_dma_descs(nand_info);
  705 +}
  706 +
  707 +/*
  708 + * Read OOB from NAND.
  709 + *
  710 + * This function is a veneer that replaces the function originally installed by
  711 + * the NAND Flash MTD code.
  712 + */
  713 +static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
  714 + struct mtd_oob_ops *ops)
  715 +{
  716 + struct nand_chip *chip = mtd->priv;
  717 + struct mxs_nand_info *nand_info = chip->priv;
  718 + int ret;
  719 +
  720 + if (ops->mode == MTD_OOB_RAW)
  721 + nand_info->raw_oob_mode = 1;
  722 + else
  723 + nand_info->raw_oob_mode = 0;
  724 +
  725 + ret = nand_info->hooked_read_oob(mtd, from, ops);
  726 +
  727 + nand_info->raw_oob_mode = 0;
  728 +
  729 + return ret;
  730 +}
  731 +
  732 +/*
  733 + * Write OOB to NAND.
  734 + *
  735 + * This function is a veneer that replaces the function originally installed by
  736 + * the NAND Flash MTD code.
  737 + */
  738 +static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
  739 + struct mtd_oob_ops *ops)
  740 +{
  741 + struct nand_chip *chip = mtd->priv;
  742 + struct mxs_nand_info *nand_info = chip->priv;
  743 + int ret;
  744 +
  745 + if (ops->mode == MTD_OOB_RAW)
  746 + nand_info->raw_oob_mode = 1;
  747 + else
  748 + nand_info->raw_oob_mode = 0;
  749 +
  750 + ret = nand_info->hooked_write_oob(mtd, to, ops);
  751 +
  752 + nand_info->raw_oob_mode = 0;
  753 +
  754 + return ret;
  755 +}
  756 +
  757 +/*
  758 + * Mark a block bad in NAND.
  759 + *
  760 + * This function is a veneer that replaces the function originally installed by
  761 + * the NAND Flash MTD code.
  762 + */
  763 +static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
  764 +{
  765 + struct nand_chip *chip = mtd->priv;
  766 + struct mxs_nand_info *nand_info = chip->priv;
  767 + int ret;
  768 +
  769 + nand_info->marking_block_bad = 1;
  770 +
  771 + ret = nand_info->hooked_block_markbad(mtd, ofs);
  772 +
  773 + nand_info->marking_block_bad = 0;
  774 +
  775 + return ret;
  776 +}
  777 +
  778 +/*
  779 + * There are several places in this driver where we have to handle the OOB and
  780 + * block marks. This is the function where things are the most complicated, so
  781 + * this is where we try to explain it all. All the other places refer back to
  782 + * here.
  783 + *
  784 + * These are the rules, in order of decreasing importance:
  785 + *
  786 + * 1) Nothing the caller does can be allowed to imperil the block mark, so all
  787 + * write operations take measures to protect it.
  788 + *
  789 + * 2) In read operations, the first byte of the OOB we return must reflect the
  790 + * true state of the block mark, no matter where that block mark appears in
  791 + * the physical page.
  792 + *
  793 + * 3) ECC-based read operations return an OOB full of set bits (since we never
  794 + * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
  795 + * return).
  796 + *
  797 + * 4) "Raw" read operations return a direct view of the physical bytes in the
  798 + * page, using the conventional definition of which bytes are data and which
  799 + * are OOB. This gives the caller a way to see the actual, physical bytes
  800 + * in the page, without the distortions applied by our ECC engine.
  801 + *
  802 + * What we do for this specific read operation depends on whether we're doing
  803 + * "raw" read, or an ECC-based read.
  804 + *
  805 + * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
  806 + * easy. When reading a page, for example, the NAND Flash MTD code calls our
  807 + * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
  808 + * ECC-based or raw view of the page is implicit in which function it calls
  809 + * (there is a similar pair of ECC-based/raw functions for writing).
  810 + *
  811 + * Since MTD assumes the OOB is not covered by ECC, there is no pair of
  812 + * ECC-based/raw functions for reading or or writing the OOB. The fact that the
  813 + * caller wants an ECC-based or raw view of the page is not propagated down to
  814 + * this driver.
  815 + *
  816 + * Since our OOB *is* covered by ECC, we need this information. So, we hook the
  817 + * ecc.read_oob and ecc.write_oob function pointers in the owning
  818 + * struct mtd_info with our own functions. These hook functions set the
  819 + * raw_oob_mode field so that, when control finally arrives here, we'll know
  820 + * what to do.
  821 + */
  822 +static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
  823 + int page, int cmd)
  824 +{
  825 + struct mxs_nand_info *nand_info = nand->priv;
  826 +
  827 + /*
  828 + * First, fill in the OOB buffer. If we're doing a raw read, we need to
  829 + * get the bytes from the physical page. If we're not doing a raw read,
  830 + * we need to fill the buffer with set bits.
  831 + */
  832 + if (nand_info->raw_oob_mode) {
  833 + /*
  834 + * If control arrives here, we're doing a "raw" read. Send the
  835 + * command to read the conventional OOB and read it.
  836 + */
  837 + nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
  838 + nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
  839 + } else {
  840 + /*
  841 + * If control arrives here, we're not doing a "raw" read. Fill
  842 + * the OOB buffer with set bits and correct the block mark.
  843 + */
  844 + memset(nand->oob_poi, 0xff, mtd->oobsize);
  845 +
  846 + nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
  847 + mxs_nand_read_buf(mtd, nand->oob_poi, 1);
  848 + }
  849 +
  850 + return 0;
  851 +
  852 +}
  853 +
  854 +/*
  855 + * Write OOB data to NAND.
  856 + */
  857 +static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
  858 + int page)
  859 +{
  860 + struct mxs_nand_info *nand_info = nand->priv;
  861 + uint8_t block_mark = 0;
  862 +
  863 + /*
  864 + * There are fundamental incompatibilities between the i.MX GPMI NFC and
  865 + * the NAND Flash MTD model that make it essentially impossible to write
  866 + * the out-of-band bytes.
  867 + *
  868 + * We permit *ONE* exception. If the *intent* of writing the OOB is to
  869 + * mark a block bad, we can do that.
  870 + */
  871 +
  872 + if (!nand_info->marking_block_bad) {
  873 + printf("NXS NAND: Writing OOB isn't supported\n");
  874 + return -EIO;
  875 + }
  876 +
  877 + /* Write the block mark. */
  878 + nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
  879 + nand->write_buf(mtd, &block_mark, 1);
  880 + nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
  881 +
  882 + /* Check if it worked. */
  883 + if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
  884 + return -EIO;
  885 +
  886 + return 0;
  887 +}
  888 +
  889 +/*
  890 + * Claims all blocks are good.
  891 + *
  892 + * In principle, this function is *only* called when the NAND Flash MTD system
  893 + * isn't allowed to keep an in-memory bad block table, so it is forced to ask
  894 + * the driver for bad block information.
  895 + *
  896 + * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
  897 + * this function is *only* called when we take it away.
  898 + *
  899 + * Thus, this function is only called when we want *all* blocks to look good,
  900 + * so it *always* return success.
  901 + */
  902 +static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
  903 +{
  904 + return 0;
  905 +}
  906 +
  907 +/*
  908 + * Nominally, the purpose of this function is to look for or create the bad
  909 + * block table. In fact, since the we call this function at the very end of
  910 + * the initialization process started by nand_scan(), and we doesn't have a
  911 + * more formal mechanism, we "hook" this function to continue init process.
  912 + *
  913 + * At this point, the physical NAND Flash chips have been identified and
  914 + * counted, so we know the physical geometry. This enables us to make some
  915 + * important configuration decisions.
  916 + *
  917 + * The return value of this function propogates directly back to this driver's
  918 + * call to nand_scan(). Anything other than zero will cause this driver to
  919 + * tear everything down and declare failure.
  920 + */
  921 +static int mxs_nand_scan_bbt(struct mtd_info *mtd)
  922 +{
  923 + struct nand_chip *nand = mtd->priv;
  924 + struct mxs_nand_info *nand_info = nand->priv;
  925 + struct mx28_bch_regs *bch_regs = (struct mx28_bch_regs *)MXS_BCH_BASE;
  926 + uint32_t tmp;
  927 +
  928 + /* Configure BCH and set NFC geometry */
  929 + mx28_reset_block(&bch_regs->hw_bch_ctrl_reg);
  930 +
  931 + /* Configure layout 0 */
  932 + tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1)
  933 + << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
  934 + tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
  935 + tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
  936 + << BCH_FLASHLAYOUT0_ECC0_OFFSET;
  937 + tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
  938 + writel(tmp, &bch_regs->hw_bch_flash0layout0);
  939 +
  940 + tmp = (mtd->writesize + mtd->oobsize)
  941 + << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
  942 + tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
  943 + << BCH_FLASHLAYOUT1_ECCN_OFFSET;
  944 + tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
  945 + writel(tmp, &bch_regs->hw_bch_flash0layout1);
  946 +
  947 + /* Set *all* chip selects to use layout 0 */
  948 + writel(0, &bch_regs->hw_bch_layoutselect);
  949 +
  950 + /* Enable BCH complete interrupt */
  951 + writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set);
  952 +
  953 + /* Hook some operations at the MTD level. */
  954 + if (mtd->read_oob != mxs_nand_hook_read_oob) {
  955 + nand_info->hooked_read_oob = mtd->read_oob;
  956 + mtd->read_oob = mxs_nand_hook_read_oob;
  957 + }
  958 +
  959 + if (mtd->write_oob != mxs_nand_hook_write_oob) {
  960 + nand_info->hooked_write_oob = mtd->write_oob;
  961 + mtd->write_oob = mxs_nand_hook_write_oob;
  962 + }
  963 +
  964 + if (mtd->block_markbad != mxs_nand_hook_block_markbad) {
  965 + nand_info->hooked_block_markbad = mtd->block_markbad;
  966 + mtd->block_markbad = mxs_nand_hook_block_markbad;
  967 + }
  968 +
  969 + /* We use the reference implementation for bad block management. */
  970 + return nand_default_bbt(mtd);
  971 +}
  972 +
  973 +/*
  974 + * Allocate DMA buffers
  975 + */
  976 +int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
  977 +{
  978 + uint8_t *buf;
  979 + const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
  980 +
  981 + /* DMA buffers */
  982 + buf = memalign(MXS_DMA_ALIGNMENT, size);
  983 + if (!buf) {
  984 + printf("MXS NAND: Error allocating DMA buffers\n");
  985 + return -ENOMEM;
  986 + }
  987 +
  988 + memset(buf, 0, size);
  989 +
  990 + nand_info->data_buf = buf;
  991 + nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
  992 +
  993 + /* Command buffers */
  994 + nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT,
  995 + MXS_NAND_COMMAND_BUFFER_SIZE);
  996 + if (!nand_info->cmd_buf) {
  997 + free(buf);
  998 + printf("MXS NAND: Error allocating command buffers\n");
  999 + return -ENOMEM;
  1000 + }
  1001 + memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
  1002 + nand_info->cmd_queue_len = 0;
  1003 +
  1004 + return 0;
  1005 +}
  1006 +
  1007 +/*
  1008 + * Initializes the NFC hardware.
  1009 + */
  1010 +int mxs_nand_init(struct mxs_nand_info *info)
  1011 +{
  1012 + struct mx28_gpmi_regs *gpmi_regs =
  1013 + (struct mx28_gpmi_regs *)MXS_GPMI_BASE;
  1014 + int i = 0;
  1015 +
  1016 + info->desc = malloc(sizeof(struct mxs_dma_desc *) *
  1017 + MXS_NAND_DMA_DESCRIPTOR_COUNT);
  1018 + if (!info->desc)
  1019 + goto err1;
  1020 +
  1021 + /* Allocate the DMA descriptors. */
  1022 + for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
  1023 + info->desc[i] = mxs_dma_desc_alloc();
  1024 + if (!info->desc[i])
  1025 + goto err2;
  1026 + }
  1027 +
  1028 + /* Init the DMA controller. */
  1029 + mxs_dma_init();
  1030 +
  1031 + /* Reset the GPMI block. */
  1032 + mx28_reset_block(&gpmi_regs->hw_gpmi_ctrl0_reg);
  1033 +
  1034 + /*
  1035 + * Choose NAND mode, set IRQ polarity, disable write protection and
  1036 + * select BCH ECC.
  1037 + */
  1038 + clrsetbits_le32(&gpmi_regs->hw_gpmi_ctrl1,
  1039 + GPMI_CTRL1_GPMI_MODE,
  1040 + GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
  1041 + GPMI_CTRL1_BCH_MODE);
  1042 +
  1043 + return 0;
  1044 +
  1045 +err2:
  1046 + free(info->desc);
  1047 +err1:
  1048 + for (--i; i >= 0; i--)
  1049 + mxs_dma_desc_free(info->desc[i]);
  1050 + printf("MXS NAND: Unable to allocate DMA descriptors\n");
  1051 + return -ENOMEM;
  1052 +}
  1053 +
  1054 +/*!
  1055 + * This function is called during the driver binding process.
  1056 + *
  1057 + * @param pdev the device structure used to store device specific
  1058 + * information that is used by the suspend, resume and
  1059 + * remove functions
  1060 + *
  1061 + * @return The function always returns 0.
  1062 + */
  1063 +int board_nand_init(struct nand_chip *nand)
  1064 +{
  1065 + struct mxs_nand_info *nand_info;
  1066 + int err;
  1067 +
  1068 + nand_info = malloc(sizeof(struct mxs_nand_info));
  1069 + if (!nand_info) {
  1070 + printf("MXS NAND: Failed to allocate private data\n");
  1071 + return -ENOMEM;
  1072 + }
  1073 + memset(nand_info, 0, sizeof(struct mxs_nand_info));
  1074 +
  1075 + err = mxs_nand_alloc_buffers(nand_info);
  1076 + if (err)
  1077 + goto err1;
  1078 +
  1079 + err = mxs_nand_init(nand_info);
  1080 + if (err)
  1081 + goto err2;
  1082 +
  1083 + memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));
  1084 +
  1085 + nand->priv = nand_info;
  1086 + nand->options |= NAND_NO_SUBPAGE_WRITE;
  1087 +
  1088 + nand->cmd_ctrl = mxs_nand_cmd_ctrl;
  1089 +
  1090 + nand->dev_ready = mxs_nand_device_ready;
  1091 + nand->select_chip = mxs_nand_select_chip;
  1092 + nand->block_bad = mxs_nand_block_bad;
  1093 + nand->scan_bbt = mxs_nand_scan_bbt;
  1094 +
  1095 + nand->read_byte = mxs_nand_read_byte;
  1096 +
  1097 + nand->read_buf = mxs_nand_read_buf;
  1098 + nand->write_buf = mxs_nand_write_buf;
  1099 +
  1100 + nand->ecc.read_page = mxs_nand_ecc_read_page;
  1101 + nand->ecc.write_page = mxs_nand_ecc_write_page;
  1102 + nand->ecc.read_oob = mxs_nand_ecc_read_oob;
  1103 + nand->ecc.write_oob = mxs_nand_ecc_write_oob;
  1104 +
  1105 + nand->ecc.layout = &fake_ecc_layout;
  1106 + nand->ecc.mode = NAND_ECC_HW;
  1107 + nand->ecc.bytes = 9;
  1108 + nand->ecc.size = 512;
  1109 +
  1110 + return 0;
  1111 +
  1112 +err2:
  1113 + free(nand_info->data_buf);
  1114 + free(nand_info->cmd_buf);
  1115 +err1:
  1116 + free(nand_info);
  1117 + return err;
  1118 +}