Commit dcb89b5aa0a90f791a594e0177cb144fdccec784

Authored by Stephen Warren
Committed by Marek Vasut
1 parent 369d3c439a

usb: ci_udc: use var name ep/ci_ep consistently

Almost all of ci_udc.c uses variable name "ep" for a struct usb_ep and
"ci_ep" for a struct ci_ep. This is nice and consistent, and helps people
know what type a variable is without searching for the declaration.
handle_ep_complete() doesn't do this, so fix it to be consistent.

Signed-off-by: Stephen Warren <swarren@nvidia.com>

Showing 1 changed file with 9 additions and 9 deletions Inline Diff

drivers/usb/gadget/ci_udc.c
1 /* 1 /*
2 * Copyright 2011, Marvell Semiconductor Inc. 2 * Copyright 2011, Marvell Semiconductor Inc.
3 * Lei Wen <leiwen@marvell.com> 3 * Lei Wen <leiwen@marvell.com>
4 * 4 *
5 * SPDX-License-Identifier: GPL-2.0+ 5 * SPDX-License-Identifier: GPL-2.0+
6 * 6 *
7 * Back ported to the 8xx platform (from the 8260 platform) by 7 * Back ported to the 8xx platform (from the 8260 platform) by
8 * Murray.Jensen@cmst.csiro.au, 27-Jan-01. 8 * Murray.Jensen@cmst.csiro.au, 27-Jan-01.
9 */ 9 */
10 10
11 #include <common.h> 11 #include <common.h>
12 #include <command.h> 12 #include <command.h>
13 #include <config.h> 13 #include <config.h>
14 #include <net.h> 14 #include <net.h>
15 #include <malloc.h> 15 #include <malloc.h>
16 #include <asm/byteorder.h> 16 #include <asm/byteorder.h>
17 #include <asm/errno.h> 17 #include <asm/errno.h>
18 #include <asm/io.h> 18 #include <asm/io.h>
19 #include <asm/unaligned.h> 19 #include <asm/unaligned.h>
20 #include <linux/types.h> 20 #include <linux/types.h>
21 #include <linux/usb/ch9.h> 21 #include <linux/usb/ch9.h>
22 #include <linux/usb/gadget.h> 22 #include <linux/usb/gadget.h>
23 #include <usb/ci_udc.h> 23 #include <usb/ci_udc.h>
24 #include "../host/ehci.h" 24 #include "../host/ehci.h"
25 #include "ci_udc.h" 25 #include "ci_udc.h"
26 26
27 /* 27 /*
28 * Check if the system has too long cachelines. If the cachelines are 28 * Check if the system has too long cachelines. If the cachelines are
29 * longer then 128b, the driver will not be able flush/invalidate data 29 * longer then 128b, the driver will not be able flush/invalidate data
30 * cache over separate QH entries. We use 128b because one QH entry is 30 * cache over separate QH entries. We use 128b because one QH entry is
31 * 64b long and there are always two QH list entries for each endpoint. 31 * 64b long and there are always two QH list entries for each endpoint.
32 */ 32 */
33 #if ARCH_DMA_MINALIGN > 128 33 #if ARCH_DMA_MINALIGN > 128
34 #error This driver can not work on systems with caches longer than 128b 34 #error This driver can not work on systems with caches longer than 128b
35 #endif 35 #endif
36 36
37 /* 37 /*
38 * Every QTD must be individually aligned, since we can program any 38 * Every QTD must be individually aligned, since we can program any
39 * QTD's address into HW. Cache flushing requires ARCH_DMA_MINALIGN, 39 * QTD's address into HW. Cache flushing requires ARCH_DMA_MINALIGN,
40 * and the USB HW requires 32-byte alignment. Align to both: 40 * and the USB HW requires 32-byte alignment. Align to both:
41 */ 41 */
42 #define ILIST_ALIGN roundup(ARCH_DMA_MINALIGN, 32) 42 #define ILIST_ALIGN roundup(ARCH_DMA_MINALIGN, 32)
43 /* Each QTD is this size */ 43 /* Each QTD is this size */
44 #define ILIST_ENT_RAW_SZ sizeof(struct ept_queue_item) 44 #define ILIST_ENT_RAW_SZ sizeof(struct ept_queue_item)
45 /* 45 /*
46 * Align the size of the QTD too, so we can add this value to each 46 * Align the size of the QTD too, so we can add this value to each
47 * QTD's address to get another aligned address. 47 * QTD's address to get another aligned address.
48 */ 48 */
49 #define ILIST_ENT_SZ roundup(ILIST_ENT_RAW_SZ, ILIST_ALIGN) 49 #define ILIST_ENT_SZ roundup(ILIST_ENT_RAW_SZ, ILIST_ALIGN)
50 /* For each endpoint, we need 2 QTDs, one for each of IN and OUT */ 50 /* For each endpoint, we need 2 QTDs, one for each of IN and OUT */
51 #define ILIST_SZ (NUM_ENDPOINTS * 2 * ILIST_ENT_SZ) 51 #define ILIST_SZ (NUM_ENDPOINTS * 2 * ILIST_ENT_SZ)
52 52
53 #ifndef DEBUG 53 #ifndef DEBUG
54 #define DBG(x...) do {} while (0) 54 #define DBG(x...) do {} while (0)
55 #else 55 #else
56 #define DBG(x...) printf(x) 56 #define DBG(x...) printf(x)
57 static const char *reqname(unsigned r) 57 static const char *reqname(unsigned r)
58 { 58 {
59 switch (r) { 59 switch (r) {
60 case USB_REQ_GET_STATUS: return "GET_STATUS"; 60 case USB_REQ_GET_STATUS: return "GET_STATUS";
61 case USB_REQ_CLEAR_FEATURE: return "CLEAR_FEATURE"; 61 case USB_REQ_CLEAR_FEATURE: return "CLEAR_FEATURE";
62 case USB_REQ_SET_FEATURE: return "SET_FEATURE"; 62 case USB_REQ_SET_FEATURE: return "SET_FEATURE";
63 case USB_REQ_SET_ADDRESS: return "SET_ADDRESS"; 63 case USB_REQ_SET_ADDRESS: return "SET_ADDRESS";
64 case USB_REQ_GET_DESCRIPTOR: return "GET_DESCRIPTOR"; 64 case USB_REQ_GET_DESCRIPTOR: return "GET_DESCRIPTOR";
65 case USB_REQ_SET_DESCRIPTOR: return "SET_DESCRIPTOR"; 65 case USB_REQ_SET_DESCRIPTOR: return "SET_DESCRIPTOR";
66 case USB_REQ_GET_CONFIGURATION: return "GET_CONFIGURATION"; 66 case USB_REQ_GET_CONFIGURATION: return "GET_CONFIGURATION";
67 case USB_REQ_SET_CONFIGURATION: return "SET_CONFIGURATION"; 67 case USB_REQ_SET_CONFIGURATION: return "SET_CONFIGURATION";
68 case USB_REQ_GET_INTERFACE: return "GET_INTERFACE"; 68 case USB_REQ_GET_INTERFACE: return "GET_INTERFACE";
69 case USB_REQ_SET_INTERFACE: return "SET_INTERFACE"; 69 case USB_REQ_SET_INTERFACE: return "SET_INTERFACE";
70 default: return "*UNKNOWN*"; 70 default: return "*UNKNOWN*";
71 } 71 }
72 } 72 }
73 #endif 73 #endif
74 74
75 static struct usb_endpoint_descriptor ep0_desc = { 75 static struct usb_endpoint_descriptor ep0_desc = {
76 .bLength = sizeof(struct usb_endpoint_descriptor), 76 .bLength = sizeof(struct usb_endpoint_descriptor),
77 .bDescriptorType = USB_DT_ENDPOINT, 77 .bDescriptorType = USB_DT_ENDPOINT,
78 .bEndpointAddress = USB_DIR_IN, 78 .bEndpointAddress = USB_DIR_IN,
79 .bmAttributes = USB_ENDPOINT_XFER_CONTROL, 79 .bmAttributes = USB_ENDPOINT_XFER_CONTROL,
80 }; 80 };
81 81
82 static int ci_pullup(struct usb_gadget *gadget, int is_on); 82 static int ci_pullup(struct usb_gadget *gadget, int is_on);
83 static int ci_ep_enable(struct usb_ep *ep, 83 static int ci_ep_enable(struct usb_ep *ep,
84 const struct usb_endpoint_descriptor *desc); 84 const struct usb_endpoint_descriptor *desc);
85 static int ci_ep_disable(struct usb_ep *ep); 85 static int ci_ep_disable(struct usb_ep *ep);
86 static int ci_ep_queue(struct usb_ep *ep, 86 static int ci_ep_queue(struct usb_ep *ep,
87 struct usb_request *req, gfp_t gfp_flags); 87 struct usb_request *req, gfp_t gfp_flags);
88 static struct usb_request * 88 static struct usb_request *
89 ci_ep_alloc_request(struct usb_ep *ep, unsigned int gfp_flags); 89 ci_ep_alloc_request(struct usb_ep *ep, unsigned int gfp_flags);
90 static void ci_ep_free_request(struct usb_ep *ep, struct usb_request *_req); 90 static void ci_ep_free_request(struct usb_ep *ep, struct usb_request *_req);
91 91
92 static struct usb_gadget_ops ci_udc_ops = { 92 static struct usb_gadget_ops ci_udc_ops = {
93 .pullup = ci_pullup, 93 .pullup = ci_pullup,
94 }; 94 };
95 95
96 static struct usb_ep_ops ci_ep_ops = { 96 static struct usb_ep_ops ci_ep_ops = {
97 .enable = ci_ep_enable, 97 .enable = ci_ep_enable,
98 .disable = ci_ep_disable, 98 .disable = ci_ep_disable,
99 .queue = ci_ep_queue, 99 .queue = ci_ep_queue,
100 .alloc_request = ci_ep_alloc_request, 100 .alloc_request = ci_ep_alloc_request,
101 .free_request = ci_ep_free_request, 101 .free_request = ci_ep_free_request,
102 }; 102 };
103 103
104 /* Init values for USB endpoints. */ 104 /* Init values for USB endpoints. */
105 static const struct usb_ep ci_ep_init[2] = { 105 static const struct usb_ep ci_ep_init[2] = {
106 [0] = { /* EP 0 */ 106 [0] = { /* EP 0 */
107 .maxpacket = 64, 107 .maxpacket = 64,
108 .name = "ep0", 108 .name = "ep0",
109 .ops = &ci_ep_ops, 109 .ops = &ci_ep_ops,
110 }, 110 },
111 [1] = { /* EP 1..n */ 111 [1] = { /* EP 1..n */
112 .maxpacket = 512, 112 .maxpacket = 512,
113 .name = "ep-", 113 .name = "ep-",
114 .ops = &ci_ep_ops, 114 .ops = &ci_ep_ops,
115 }, 115 },
116 }; 116 };
117 117
118 static struct ci_drv controller = { 118 static struct ci_drv controller = {
119 .gadget = { 119 .gadget = {
120 .name = "ci_udc", 120 .name = "ci_udc",
121 .ops = &ci_udc_ops, 121 .ops = &ci_udc_ops,
122 .is_dualspeed = 1, 122 .is_dualspeed = 1,
123 }, 123 },
124 }; 124 };
125 125
126 /** 126 /**
127 * ci_get_qh() - return queue head for endpoint 127 * ci_get_qh() - return queue head for endpoint
128 * @ep_num: Endpoint number 128 * @ep_num: Endpoint number
129 * @dir_in: Direction of the endpoint (IN = 1, OUT = 0) 129 * @dir_in: Direction of the endpoint (IN = 1, OUT = 0)
130 * 130 *
131 * This function returns the QH associated with particular endpoint 131 * This function returns the QH associated with particular endpoint
132 * and it's direction. 132 * and it's direction.
133 */ 133 */
134 static struct ept_queue_head *ci_get_qh(int ep_num, int dir_in) 134 static struct ept_queue_head *ci_get_qh(int ep_num, int dir_in)
135 { 135 {
136 return &controller.epts[(ep_num * 2) + dir_in]; 136 return &controller.epts[(ep_num * 2) + dir_in];
137 } 137 }
138 138
139 /** 139 /**
140 * ci_get_qtd() - return queue item for endpoint 140 * ci_get_qtd() - return queue item for endpoint
141 * @ep_num: Endpoint number 141 * @ep_num: Endpoint number
142 * @dir_in: Direction of the endpoint (IN = 1, OUT = 0) 142 * @dir_in: Direction of the endpoint (IN = 1, OUT = 0)
143 * 143 *
144 * This function returns the QH associated with particular endpoint 144 * This function returns the QH associated with particular endpoint
145 * and it's direction. 145 * and it's direction.
146 */ 146 */
147 static struct ept_queue_item *ci_get_qtd(int ep_num, int dir_in) 147 static struct ept_queue_item *ci_get_qtd(int ep_num, int dir_in)
148 { 148 {
149 int index = (ep_num * 2) + dir_in; 149 int index = (ep_num * 2) + dir_in;
150 uint8_t *imem = controller.items_mem + (index * ILIST_ENT_SZ); 150 uint8_t *imem = controller.items_mem + (index * ILIST_ENT_SZ);
151 return (struct ept_queue_item *)imem; 151 return (struct ept_queue_item *)imem;
152 } 152 }
153 153
154 /** 154 /**
155 * ci_flush_qh - flush cache over queue head 155 * ci_flush_qh - flush cache over queue head
156 * @ep_num: Endpoint number 156 * @ep_num: Endpoint number
157 * 157 *
158 * This function flushes cache over QH for particular endpoint. 158 * This function flushes cache over QH for particular endpoint.
159 */ 159 */
160 static void ci_flush_qh(int ep_num) 160 static void ci_flush_qh(int ep_num)
161 { 161 {
162 struct ept_queue_head *head = ci_get_qh(ep_num, 0); 162 struct ept_queue_head *head = ci_get_qh(ep_num, 0);
163 const uint32_t start = (uint32_t)head; 163 const uint32_t start = (uint32_t)head;
164 const uint32_t end = start + 2 * sizeof(*head); 164 const uint32_t end = start + 2 * sizeof(*head);
165 165
166 flush_dcache_range(start, end); 166 flush_dcache_range(start, end);
167 } 167 }
168 168
169 /** 169 /**
170 * ci_invalidate_qh - invalidate cache over queue head 170 * ci_invalidate_qh - invalidate cache over queue head
171 * @ep_num: Endpoint number 171 * @ep_num: Endpoint number
172 * 172 *
173 * This function invalidates cache over QH for particular endpoint. 173 * This function invalidates cache over QH for particular endpoint.
174 */ 174 */
175 static void ci_invalidate_qh(int ep_num) 175 static void ci_invalidate_qh(int ep_num)
176 { 176 {
177 struct ept_queue_head *head = ci_get_qh(ep_num, 0); 177 struct ept_queue_head *head = ci_get_qh(ep_num, 0);
178 uint32_t start = (uint32_t)head; 178 uint32_t start = (uint32_t)head;
179 uint32_t end = start + 2 * sizeof(*head); 179 uint32_t end = start + 2 * sizeof(*head);
180 180
181 invalidate_dcache_range(start, end); 181 invalidate_dcache_range(start, end);
182 } 182 }
183 183
184 /** 184 /**
185 * ci_flush_qtd - flush cache over queue item 185 * ci_flush_qtd - flush cache over queue item
186 * @ep_num: Endpoint number 186 * @ep_num: Endpoint number
187 * 187 *
188 * This function flushes cache over qTD pair for particular endpoint. 188 * This function flushes cache over qTD pair for particular endpoint.
189 */ 189 */
190 static void ci_flush_qtd(int ep_num) 190 static void ci_flush_qtd(int ep_num)
191 { 191 {
192 struct ept_queue_item *item = ci_get_qtd(ep_num, 0); 192 struct ept_queue_item *item = ci_get_qtd(ep_num, 0);
193 const uint32_t start = (uint32_t)item; 193 const uint32_t start = (uint32_t)item;
194 const uint32_t end = start + 2 * ILIST_ENT_SZ; 194 const uint32_t end = start + 2 * ILIST_ENT_SZ;
195 195
196 flush_dcache_range(start, end); 196 flush_dcache_range(start, end);
197 } 197 }
198 198
199 /** 199 /**
200 * ci_invalidate_qtd - invalidate cache over queue item 200 * ci_invalidate_qtd - invalidate cache over queue item
201 * @ep_num: Endpoint number 201 * @ep_num: Endpoint number
202 * 202 *
203 * This function invalidates cache over qTD pair for particular endpoint. 203 * This function invalidates cache over qTD pair for particular endpoint.
204 */ 204 */
205 static void ci_invalidate_qtd(int ep_num) 205 static void ci_invalidate_qtd(int ep_num)
206 { 206 {
207 struct ept_queue_item *item = ci_get_qtd(ep_num, 0); 207 struct ept_queue_item *item = ci_get_qtd(ep_num, 0);
208 const uint32_t start = (uint32_t)item; 208 const uint32_t start = (uint32_t)item;
209 const uint32_t end = start + 2 * ILIST_ENT_SZ; 209 const uint32_t end = start + 2 * ILIST_ENT_SZ;
210 210
211 invalidate_dcache_range(start, end); 211 invalidate_dcache_range(start, end);
212 } 212 }
213 213
214 static struct usb_request * 214 static struct usb_request *
215 ci_ep_alloc_request(struct usb_ep *ep, unsigned int gfp_flags) 215 ci_ep_alloc_request(struct usb_ep *ep, unsigned int gfp_flags)
216 { 216 {
217 struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep); 217 struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
218 int num; 218 int num;
219 struct ci_req *ci_req; 219 struct ci_req *ci_req;
220 220
221 num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 221 num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
222 if (num == 0 && controller.ep0_req) 222 if (num == 0 && controller.ep0_req)
223 return &controller.ep0_req->req; 223 return &controller.ep0_req->req;
224 224
225 ci_req = calloc(1, sizeof(*ci_req)); 225 ci_req = calloc(1, sizeof(*ci_req));
226 if (!ci_req) 226 if (!ci_req)
227 return NULL; 227 return NULL;
228 228
229 INIT_LIST_HEAD(&ci_req->queue); 229 INIT_LIST_HEAD(&ci_req->queue);
230 230
231 if (num == 0) 231 if (num == 0)
232 controller.ep0_req = ci_req; 232 controller.ep0_req = ci_req;
233 233
234 return &ci_req->req; 234 return &ci_req->req;
235 } 235 }
236 236
237 static void ci_ep_free_request(struct usb_ep *ep, struct usb_request *req) 237 static void ci_ep_free_request(struct usb_ep *ep, struct usb_request *req)
238 { 238 {
239 struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep); 239 struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
240 struct ci_req *ci_req = container_of(req, struct ci_req, req); 240 struct ci_req *ci_req = container_of(req, struct ci_req, req);
241 int num; 241 int num;
242 242
243 num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 243 num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
244 if (num == 0) { 244 if (num == 0) {
245 if (!controller.ep0_req) 245 if (!controller.ep0_req)
246 return; 246 return;
247 controller.ep0_req = 0; 247 controller.ep0_req = 0;
248 } 248 }
249 249
250 if (ci_req->b_buf) 250 if (ci_req->b_buf)
251 free(ci_req->b_buf); 251 free(ci_req->b_buf);
252 free(ci_req); 252 free(ci_req);
253 } 253 }
254 254
255 static void ep_enable(int num, int in, int maxpacket) 255 static void ep_enable(int num, int in, int maxpacket)
256 { 256 {
257 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor; 257 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
258 unsigned n; 258 unsigned n;
259 259
260 n = readl(&udc->epctrl[num]); 260 n = readl(&udc->epctrl[num]);
261 if (in) 261 if (in)
262 n |= (CTRL_TXE | CTRL_TXR | CTRL_TXT_BULK); 262 n |= (CTRL_TXE | CTRL_TXR | CTRL_TXT_BULK);
263 else 263 else
264 n |= (CTRL_RXE | CTRL_RXR | CTRL_RXT_BULK); 264 n |= (CTRL_RXE | CTRL_RXR | CTRL_RXT_BULK);
265 265
266 if (num != 0) { 266 if (num != 0) {
267 struct ept_queue_head *head = ci_get_qh(num, in); 267 struct ept_queue_head *head = ci_get_qh(num, in);
268 268
269 head->config = CONFIG_MAX_PKT(maxpacket) | CONFIG_ZLT; 269 head->config = CONFIG_MAX_PKT(maxpacket) | CONFIG_ZLT;
270 ci_flush_qh(num); 270 ci_flush_qh(num);
271 } 271 }
272 writel(n, &udc->epctrl[num]); 272 writel(n, &udc->epctrl[num]);
273 } 273 }
274 274
275 static int ci_ep_enable(struct usb_ep *ep, 275 static int ci_ep_enable(struct usb_ep *ep,
276 const struct usb_endpoint_descriptor *desc) 276 const struct usb_endpoint_descriptor *desc)
277 { 277 {
278 struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep); 278 struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
279 int num, in; 279 int num, in;
280 num = desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 280 num = desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
281 in = (desc->bEndpointAddress & USB_DIR_IN) != 0; 281 in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
282 ci_ep->desc = desc; 282 ci_ep->desc = desc;
283 283
284 if (num) { 284 if (num) {
285 int max = get_unaligned_le16(&desc->wMaxPacketSize); 285 int max = get_unaligned_le16(&desc->wMaxPacketSize);
286 286
287 if ((max > 64) && (controller.gadget.speed == USB_SPEED_FULL)) 287 if ((max > 64) && (controller.gadget.speed == USB_SPEED_FULL))
288 max = 64; 288 max = 64;
289 if (ep->maxpacket != max) { 289 if (ep->maxpacket != max) {
290 DBG("%s: from %d to %d\n", __func__, 290 DBG("%s: from %d to %d\n", __func__,
291 ep->maxpacket, max); 291 ep->maxpacket, max);
292 ep->maxpacket = max; 292 ep->maxpacket = max;
293 } 293 }
294 } 294 }
295 ep_enable(num, in, ep->maxpacket); 295 ep_enable(num, in, ep->maxpacket);
296 DBG("%s: num=%d maxpacket=%d\n", __func__, num, ep->maxpacket); 296 DBG("%s: num=%d maxpacket=%d\n", __func__, num, ep->maxpacket);
297 return 0; 297 return 0;
298 } 298 }
299 299
300 static int ci_ep_disable(struct usb_ep *ep) 300 static int ci_ep_disable(struct usb_ep *ep)
301 { 301 {
302 struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep); 302 struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
303 303
304 ci_ep->desc = NULL; 304 ci_ep->desc = NULL;
305 return 0; 305 return 0;
306 } 306 }
307 307
308 static int ci_bounce(struct ci_req *ci_req, int in) 308 static int ci_bounce(struct ci_req *ci_req, int in)
309 { 309 {
310 struct usb_request *req = &ci_req->req; 310 struct usb_request *req = &ci_req->req;
311 uint32_t addr = (uint32_t)req->buf; 311 uint32_t addr = (uint32_t)req->buf;
312 uint32_t hwaddr; 312 uint32_t hwaddr;
313 uint32_t aligned_used_len; 313 uint32_t aligned_used_len;
314 314
315 /* Input buffer address is not aligned. */ 315 /* Input buffer address is not aligned. */
316 if (addr & (ARCH_DMA_MINALIGN - 1)) 316 if (addr & (ARCH_DMA_MINALIGN - 1))
317 goto align; 317 goto align;
318 318
319 /* Input buffer length is not aligned. */ 319 /* Input buffer length is not aligned. */
320 if (req->length & (ARCH_DMA_MINALIGN - 1)) 320 if (req->length & (ARCH_DMA_MINALIGN - 1))
321 goto align; 321 goto align;
322 322
323 /* The buffer is well aligned, only flush cache. */ 323 /* The buffer is well aligned, only flush cache. */
324 ci_req->hw_len = req->length; 324 ci_req->hw_len = req->length;
325 ci_req->hw_buf = req->buf; 325 ci_req->hw_buf = req->buf;
326 goto flush; 326 goto flush;
327 327
328 align: 328 align:
329 if (ci_req->b_buf && req->length > ci_req->b_len) { 329 if (ci_req->b_buf && req->length > ci_req->b_len) {
330 free(ci_req->b_buf); 330 free(ci_req->b_buf);
331 ci_req->b_buf = 0; 331 ci_req->b_buf = 0;
332 } 332 }
333 if (!ci_req->b_buf) { 333 if (!ci_req->b_buf) {
334 ci_req->b_len = roundup(req->length, ARCH_DMA_MINALIGN); 334 ci_req->b_len = roundup(req->length, ARCH_DMA_MINALIGN);
335 ci_req->b_buf = memalign(ARCH_DMA_MINALIGN, ci_req->b_len); 335 ci_req->b_buf = memalign(ARCH_DMA_MINALIGN, ci_req->b_len);
336 if (!ci_req->b_buf) 336 if (!ci_req->b_buf)
337 return -ENOMEM; 337 return -ENOMEM;
338 } 338 }
339 ci_req->hw_len = ci_req->b_len; 339 ci_req->hw_len = ci_req->b_len;
340 ci_req->hw_buf = ci_req->b_buf; 340 ci_req->hw_buf = ci_req->b_buf;
341 341
342 if (in) 342 if (in)
343 memcpy(ci_req->hw_buf, req->buf, req->length); 343 memcpy(ci_req->hw_buf, req->buf, req->length);
344 344
345 flush: 345 flush:
346 hwaddr = (uint32_t)ci_req->hw_buf; 346 hwaddr = (uint32_t)ci_req->hw_buf;
347 aligned_used_len = roundup(req->length, ARCH_DMA_MINALIGN); 347 aligned_used_len = roundup(req->length, ARCH_DMA_MINALIGN);
348 flush_dcache_range(hwaddr, hwaddr + aligned_used_len); 348 flush_dcache_range(hwaddr, hwaddr + aligned_used_len);
349 349
350 return 0; 350 return 0;
351 } 351 }
352 352
353 static void ci_debounce(struct ci_req *ci_req, int in) 353 static void ci_debounce(struct ci_req *ci_req, int in)
354 { 354 {
355 struct usb_request *req = &ci_req->req; 355 struct usb_request *req = &ci_req->req;
356 uint32_t addr = (uint32_t)req->buf; 356 uint32_t addr = (uint32_t)req->buf;
357 uint32_t hwaddr = (uint32_t)ci_req->hw_buf; 357 uint32_t hwaddr = (uint32_t)ci_req->hw_buf;
358 uint32_t aligned_used_len; 358 uint32_t aligned_used_len;
359 359
360 if (in) 360 if (in)
361 return; 361 return;
362 362
363 aligned_used_len = roundup(req->actual, ARCH_DMA_MINALIGN); 363 aligned_used_len = roundup(req->actual, ARCH_DMA_MINALIGN);
364 invalidate_dcache_range(hwaddr, hwaddr + aligned_used_len); 364 invalidate_dcache_range(hwaddr, hwaddr + aligned_used_len);
365 365
366 if (addr == hwaddr) 366 if (addr == hwaddr)
367 return; /* not a bounce */ 367 return; /* not a bounce */
368 368
369 memcpy(req->buf, ci_req->hw_buf, req->actual); 369 memcpy(req->buf, ci_req->hw_buf, req->actual);
370 } 370 }
371 371
372 static void ci_ep_submit_next_request(struct ci_ep *ci_ep) 372 static void ci_ep_submit_next_request(struct ci_ep *ci_ep)
373 { 373 {
374 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor; 374 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
375 struct ept_queue_item *item; 375 struct ept_queue_item *item;
376 struct ept_queue_head *head; 376 struct ept_queue_head *head;
377 int bit, num, len, in; 377 int bit, num, len, in;
378 struct ci_req *ci_req; 378 struct ci_req *ci_req;
379 379
380 ci_ep->req_primed = true; 380 ci_ep->req_primed = true;
381 381
382 num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 382 num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
383 in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0; 383 in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
384 item = ci_get_qtd(num, in); 384 item = ci_get_qtd(num, in);
385 head = ci_get_qh(num, in); 385 head = ci_get_qh(num, in);
386 386
387 ci_req = list_first_entry(&ci_ep->queue, struct ci_req, queue); 387 ci_req = list_first_entry(&ci_ep->queue, struct ci_req, queue);
388 len = ci_req->req.length; 388 len = ci_req->req.length;
389 389
390 item->info = INFO_BYTES(len) | INFO_ACTIVE; 390 item->info = INFO_BYTES(len) | INFO_ACTIVE;
391 item->page0 = (uint32_t)ci_req->hw_buf; 391 item->page0 = (uint32_t)ci_req->hw_buf;
392 item->page1 = ((uint32_t)ci_req->hw_buf & 0xfffff000) + 0x1000; 392 item->page1 = ((uint32_t)ci_req->hw_buf & 0xfffff000) + 0x1000;
393 item->page2 = ((uint32_t)ci_req->hw_buf & 0xfffff000) + 0x2000; 393 item->page2 = ((uint32_t)ci_req->hw_buf & 0xfffff000) + 0x2000;
394 item->page3 = ((uint32_t)ci_req->hw_buf & 0xfffff000) + 0x3000; 394 item->page3 = ((uint32_t)ci_req->hw_buf & 0xfffff000) + 0x3000;
395 item->page4 = ((uint32_t)ci_req->hw_buf & 0xfffff000) + 0x4000; 395 item->page4 = ((uint32_t)ci_req->hw_buf & 0xfffff000) + 0x4000;
396 396
397 head->next = (unsigned) item; 397 head->next = (unsigned) item;
398 head->info = 0; 398 head->info = 0;
399 399
400 /* 400 /*
401 * When sending the data for an IN transaction, the attached host 401 * When sending the data for an IN transaction, the attached host
402 * knows that all data for the IN is sent when one of the following 402 * knows that all data for the IN is sent when one of the following
403 * occurs: 403 * occurs:
404 * a) A zero-length packet is transmitted. 404 * a) A zero-length packet is transmitted.
405 * b) A packet with length that isn't an exact multiple of the ep's 405 * b) A packet with length that isn't an exact multiple of the ep's
406 * maxpacket is transmitted. 406 * maxpacket is transmitted.
407 * c) Enough data is sent to exactly fill the host's maximum expected 407 * c) Enough data is sent to exactly fill the host's maximum expected
408 * IN transaction size. 408 * IN transaction size.
409 * 409 *
410 * One of these conditions MUST apply at the end of an IN transaction, 410 * One of these conditions MUST apply at the end of an IN transaction,
411 * or the transaction will not be considered complete by the host. If 411 * or the transaction will not be considered complete by the host. If
412 * none of (a)..(c) already applies, then we must force (a) to apply 412 * none of (a)..(c) already applies, then we must force (a) to apply
413 * by explicitly sending an extra zero-length packet. 413 * by explicitly sending an extra zero-length packet.
414 */ 414 */
415 /* IN !a !b !c */ 415 /* IN !a !b !c */
416 if (in && len && !(len % ci_ep->ep.maxpacket) && ci_req->req.zero) { 416 if (in && len && !(len % ci_ep->ep.maxpacket) && ci_req->req.zero) {
417 /* 417 /*
418 * Each endpoint has 2 items allocated, even though typically 418 * Each endpoint has 2 items allocated, even though typically
419 * only 1 is used at a time since either an IN or an OUT but 419 * only 1 is used at a time since either an IN or an OUT but
420 * not both is queued. For an IN transaction, item currently 420 * not both is queued. For an IN transaction, item currently
421 * points at the second of these items, so we know that we 421 * points at the second of these items, so we know that we
422 * can use the other to transmit the extra zero-length packet. 422 * can use the other to transmit the extra zero-length packet.
423 */ 423 */
424 struct ept_queue_item *other_item = ci_get_qtd(num, 0); 424 struct ept_queue_item *other_item = ci_get_qtd(num, 0);
425 item->next = (unsigned)other_item; 425 item->next = (unsigned)other_item;
426 item = other_item; 426 item = other_item;
427 item->info = INFO_ACTIVE; 427 item->info = INFO_ACTIVE;
428 } 428 }
429 429
430 item->next = TERMINATE; 430 item->next = TERMINATE;
431 item->info |= INFO_IOC; 431 item->info |= INFO_IOC;
432 432
433 ci_flush_qtd(num); 433 ci_flush_qtd(num);
434 434
435 DBG("ept%d %s queue len %x, req %p, buffer %p\n", 435 DBG("ept%d %s queue len %x, req %p, buffer %p\n",
436 num, in ? "in" : "out", len, ci_req, ci_req->hw_buf); 436 num, in ? "in" : "out", len, ci_req, ci_req->hw_buf);
437 ci_flush_qh(num); 437 ci_flush_qh(num);
438 438
439 if (in) 439 if (in)
440 bit = EPT_TX(num); 440 bit = EPT_TX(num);
441 else 441 else
442 bit = EPT_RX(num); 442 bit = EPT_RX(num);
443 443
444 writel(bit, &udc->epprime); 444 writel(bit, &udc->epprime);
445 } 445 }
446 446
447 static int ci_ep_queue(struct usb_ep *ep, 447 static int ci_ep_queue(struct usb_ep *ep,
448 struct usb_request *req, gfp_t gfp_flags) 448 struct usb_request *req, gfp_t gfp_flags)
449 { 449 {
450 struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep); 450 struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
451 struct ci_req *ci_req = container_of(req, struct ci_req, req); 451 struct ci_req *ci_req = container_of(req, struct ci_req, req);
452 int in, ret; 452 int in, ret;
453 int __maybe_unused num; 453 int __maybe_unused num;
454 454
455 num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 455 num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
456 in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0; 456 in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
457 457
458 if (!num && ci_ep->req_primed) { 458 if (!num && ci_ep->req_primed) {
459 /* 459 /*
460 * The flipping of ep0 between IN and OUT relies on 460 * The flipping of ep0 between IN and OUT relies on
461 * ci_ep_queue consuming the current IN/OUT setting 461 * ci_ep_queue consuming the current IN/OUT setting
462 * immediately. If this is deferred to a later point when the 462 * immediately. If this is deferred to a later point when the
463 * req is pulled out of ci_req->queue, then the IN/OUT setting 463 * req is pulled out of ci_req->queue, then the IN/OUT setting
464 * may have been changed since the req was queued, and state 464 * may have been changed since the req was queued, and state
465 * will get out of sync. This condition doesn't occur today, 465 * will get out of sync. This condition doesn't occur today,
466 * but could if bugs were introduced later, and this error 466 * but could if bugs were introduced later, and this error
467 * check will save a lot of debugging time. 467 * check will save a lot of debugging time.
468 */ 468 */
469 printf("%s: ep0 transaction already in progress\n", __func__); 469 printf("%s: ep0 transaction already in progress\n", __func__);
470 return -EPROTO; 470 return -EPROTO;
471 } 471 }
472 472
473 ret = ci_bounce(ci_req, in); 473 ret = ci_bounce(ci_req, in);
474 if (ret) 474 if (ret)
475 return ret; 475 return ret;
476 476
477 DBG("ept%d %s pre-queue req %p, buffer %p\n", 477 DBG("ept%d %s pre-queue req %p, buffer %p\n",
478 num, in ? "in" : "out", ci_req, ci_req->hw_buf); 478 num, in ? "in" : "out", ci_req, ci_req->hw_buf);
479 list_add_tail(&ci_req->queue, &ci_ep->queue); 479 list_add_tail(&ci_req->queue, &ci_ep->queue);
480 480
481 if (!ci_ep->req_primed) 481 if (!ci_ep->req_primed)
482 ci_ep_submit_next_request(ci_ep); 482 ci_ep_submit_next_request(ci_ep);
483 483
484 return 0; 484 return 0;
485 } 485 }
486 486
487 static void flip_ep0_direction(void) 487 static void flip_ep0_direction(void)
488 { 488 {
489 if (ep0_desc.bEndpointAddress == USB_DIR_IN) { 489 if (ep0_desc.bEndpointAddress == USB_DIR_IN) {
490 DBG("%s: Flipping ep0 to OUT\n", __func__); 490 DBG("%s: Flipping ep0 to OUT\n", __func__);
491 ep0_desc.bEndpointAddress = 0; 491 ep0_desc.bEndpointAddress = 0;
492 } else { 492 } else {
493 DBG("%s: Flipping ep0 to IN\n", __func__); 493 DBG("%s: Flipping ep0 to IN\n", __func__);
494 ep0_desc.bEndpointAddress = USB_DIR_IN; 494 ep0_desc.bEndpointAddress = USB_DIR_IN;
495 } 495 }
496 } 496 }
497 497
498 static void handle_ep_complete(struct ci_ep *ep) 498 static void handle_ep_complete(struct ci_ep *ci_ep)
499 { 499 {
500 struct ept_queue_item *item; 500 struct ept_queue_item *item;
501 int num, in, len; 501 int num, in, len;
502 struct ci_req *ci_req; 502 struct ci_req *ci_req;
503 503
504 num = ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 504 num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
505 in = (ep->desc->bEndpointAddress & USB_DIR_IN) != 0; 505 in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
506 item = ci_get_qtd(num, in); 506 item = ci_get_qtd(num, in);
507 ci_invalidate_qtd(num); 507 ci_invalidate_qtd(num);
508 508
509 len = (item->info >> 16) & 0x7fff; 509 len = (item->info >> 16) & 0x7fff;
510 if (item->info & 0xff) 510 if (item->info & 0xff)
511 printf("EP%d/%s FAIL info=%x pg0=%x\n", 511 printf("EP%d/%s FAIL info=%x pg0=%x\n",
512 num, in ? "in" : "out", item->info, item->page0); 512 num, in ? "in" : "out", item->info, item->page0);
513 513
514 ci_req = list_first_entry(&ep->queue, struct ci_req, queue); 514 ci_req = list_first_entry(&ci_ep->queue, struct ci_req, queue);
515 list_del_init(&ci_req->queue); 515 list_del_init(&ci_req->queue);
516 ep->req_primed = false; 516 ci_ep->req_primed = false;
517 517
518 if (!list_empty(&ep->queue)) 518 if (!list_empty(&ci_ep->queue))
519 ci_ep_submit_next_request(ep); 519 ci_ep_submit_next_request(ci_ep);
520 520
521 ci_req->req.actual = ci_req->req.length - len; 521 ci_req->req.actual = ci_req->req.length - len;
522 ci_debounce(ci_req, in); 522 ci_debounce(ci_req, in);
523 523
524 DBG("ept%d %s req %p, complete %x\n", 524 DBG("ept%d %s req %p, complete %x\n",
525 num, in ? "in" : "out", ci_req, len); 525 num, in ? "in" : "out", ci_req, len);
526 if (num != 0 || controller.ep0_data_phase) 526 if (num != 0 || controller.ep0_data_phase)
527 ci_req->req.complete(&ep->ep, &ci_req->req); 527 ci_req->req.complete(&ci_ep->ep, &ci_req->req);
528 if (num == 0 && controller.ep0_data_phase) { 528 if (num == 0 && controller.ep0_data_phase) {
529 /* 529 /*
530 * Data Stage is complete, so flip ep0 dir for Status Stage, 530 * Data Stage is complete, so flip ep0 dir for Status Stage,
531 * which always transfers a packet in the opposite direction. 531 * which always transfers a packet in the opposite direction.
532 */ 532 */
533 DBG("%s: flip ep0 dir for Status Stage\n", __func__); 533 DBG("%s: flip ep0 dir for Status Stage\n", __func__);
534 flip_ep0_direction(); 534 flip_ep0_direction();
535 controller.ep0_data_phase = false; 535 controller.ep0_data_phase = false;
536 ci_req->req.length = 0; 536 ci_req->req.length = 0;
537 usb_ep_queue(&ep->ep, &ci_req->req, 0); 537 usb_ep_queue(&ci_ep->ep, &ci_req->req, 0);
538 } 538 }
539 } 539 }
540 540
541 #define SETUP(type, request) (((type) << 8) | (request)) 541 #define SETUP(type, request) (((type) << 8) | (request))
542 542
543 static void handle_setup(void) 543 static void handle_setup(void)
544 { 544 {
545 struct ci_ep *ci_ep = &controller.ep[0]; 545 struct ci_ep *ci_ep = &controller.ep[0];
546 struct ci_req *ci_req; 546 struct ci_req *ci_req;
547 struct usb_request *req; 547 struct usb_request *req;
548 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor; 548 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
549 struct ept_queue_head *head; 549 struct ept_queue_head *head;
550 struct usb_ctrlrequest r; 550 struct usb_ctrlrequest r;
551 int status = 0; 551 int status = 0;
552 int num, in, _num, _in, i; 552 int num, in, _num, _in, i;
553 char *buf; 553 char *buf;
554 554
555 ci_req = controller.ep0_req; 555 ci_req = controller.ep0_req;
556 req = &ci_req->req; 556 req = &ci_req->req;
557 head = ci_get_qh(0, 0); /* EP0 OUT */ 557 head = ci_get_qh(0, 0); /* EP0 OUT */
558 558
559 ci_invalidate_qh(0); 559 ci_invalidate_qh(0);
560 memcpy(&r, head->setup_data, sizeof(struct usb_ctrlrequest)); 560 memcpy(&r, head->setup_data, sizeof(struct usb_ctrlrequest));
561 #ifdef CONFIG_CI_UDC_HAS_HOSTPC 561 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
562 writel(EPT_RX(0), &udc->epsetupstat); 562 writel(EPT_RX(0), &udc->epsetupstat);
563 #else 563 #else
564 writel(EPT_RX(0), &udc->epstat); 564 writel(EPT_RX(0), &udc->epstat);
565 #endif 565 #endif
566 DBG("handle setup %s, %x, %x index %x value %x length %x\n", 566 DBG("handle setup %s, %x, %x index %x value %x length %x\n",
567 reqname(r.bRequest), r.bRequestType, r.bRequest, r.wIndex, 567 reqname(r.bRequest), r.bRequestType, r.bRequest, r.wIndex,
568 r.wValue, r.wLength); 568 r.wValue, r.wLength);
569 569
570 /* Set EP0 dir for Data Stage based on Setup Stage data */ 570 /* Set EP0 dir for Data Stage based on Setup Stage data */
571 if (r.bRequestType & USB_DIR_IN) { 571 if (r.bRequestType & USB_DIR_IN) {
572 DBG("%s: Set ep0 to IN for Data Stage\n", __func__); 572 DBG("%s: Set ep0 to IN for Data Stage\n", __func__);
573 ep0_desc.bEndpointAddress = USB_DIR_IN; 573 ep0_desc.bEndpointAddress = USB_DIR_IN;
574 } else { 574 } else {
575 DBG("%s: Set ep0 to OUT for Data Stage\n", __func__); 575 DBG("%s: Set ep0 to OUT for Data Stage\n", __func__);
576 ep0_desc.bEndpointAddress = 0; 576 ep0_desc.bEndpointAddress = 0;
577 } 577 }
578 if (r.wLength) { 578 if (r.wLength) {
579 controller.ep0_data_phase = true; 579 controller.ep0_data_phase = true;
580 } else { 580 } else {
581 /* 0 length -> no Data Stage. Flip dir for Status Stage */ 581 /* 0 length -> no Data Stage. Flip dir for Status Stage */
582 DBG("%s: 0 length: flip ep0 dir for Status Stage\n", __func__); 582 DBG("%s: 0 length: flip ep0 dir for Status Stage\n", __func__);
583 flip_ep0_direction(); 583 flip_ep0_direction();
584 controller.ep0_data_phase = false; 584 controller.ep0_data_phase = false;
585 } 585 }
586 586
587 list_del_init(&ci_req->queue); 587 list_del_init(&ci_req->queue);
588 ci_ep->req_primed = false; 588 ci_ep->req_primed = false;
589 589
590 switch (SETUP(r.bRequestType, r.bRequest)) { 590 switch (SETUP(r.bRequestType, r.bRequest)) {
591 case SETUP(USB_RECIP_ENDPOINT, USB_REQ_CLEAR_FEATURE): 591 case SETUP(USB_RECIP_ENDPOINT, USB_REQ_CLEAR_FEATURE):
592 _num = r.wIndex & 15; 592 _num = r.wIndex & 15;
593 _in = !!(r.wIndex & 0x80); 593 _in = !!(r.wIndex & 0x80);
594 594
595 if ((r.wValue == 0) && (r.wLength == 0)) { 595 if ((r.wValue == 0) && (r.wLength == 0)) {
596 req->length = 0; 596 req->length = 0;
597 for (i = 0; i < NUM_ENDPOINTS; i++) { 597 for (i = 0; i < NUM_ENDPOINTS; i++) {
598 struct ci_ep *ep = &controller.ep[i]; 598 struct ci_ep *ep = &controller.ep[i];
599 599
600 if (!ep->desc) 600 if (!ep->desc)
601 continue; 601 continue;
602 num = ep->desc->bEndpointAddress 602 num = ep->desc->bEndpointAddress
603 & USB_ENDPOINT_NUMBER_MASK; 603 & USB_ENDPOINT_NUMBER_MASK;
604 in = (ep->desc->bEndpointAddress 604 in = (ep->desc->bEndpointAddress
605 & USB_DIR_IN) != 0; 605 & USB_DIR_IN) != 0;
606 if ((num == _num) && (in == _in)) { 606 if ((num == _num) && (in == _in)) {
607 ep_enable(num, in, ep->ep.maxpacket); 607 ep_enable(num, in, ep->ep.maxpacket);
608 usb_ep_queue(controller.gadget.ep0, 608 usb_ep_queue(controller.gadget.ep0,
609 req, 0); 609 req, 0);
610 break; 610 break;
611 } 611 }
612 } 612 }
613 } 613 }
614 return; 614 return;
615 615
616 case SETUP(USB_RECIP_DEVICE, USB_REQ_SET_ADDRESS): 616 case SETUP(USB_RECIP_DEVICE, USB_REQ_SET_ADDRESS):
617 /* 617 /*
618 * write address delayed (will take effect 618 * write address delayed (will take effect
619 * after the next IN txn) 619 * after the next IN txn)
620 */ 620 */
621 writel((r.wValue << 25) | (1 << 24), &udc->devaddr); 621 writel((r.wValue << 25) | (1 << 24), &udc->devaddr);
622 req->length = 0; 622 req->length = 0;
623 usb_ep_queue(controller.gadget.ep0, req, 0); 623 usb_ep_queue(controller.gadget.ep0, req, 0);
624 return; 624 return;
625 625
626 case SETUP(USB_DIR_IN | USB_RECIP_DEVICE, USB_REQ_GET_STATUS): 626 case SETUP(USB_DIR_IN | USB_RECIP_DEVICE, USB_REQ_GET_STATUS):
627 req->length = 2; 627 req->length = 2;
628 buf = (char *)req->buf; 628 buf = (char *)req->buf;
629 buf[0] = 1 << USB_DEVICE_SELF_POWERED; 629 buf[0] = 1 << USB_DEVICE_SELF_POWERED;
630 buf[1] = 0; 630 buf[1] = 0;
631 usb_ep_queue(controller.gadget.ep0, req, 0); 631 usb_ep_queue(controller.gadget.ep0, req, 0);
632 return; 632 return;
633 } 633 }
634 /* pass request up to the gadget driver */ 634 /* pass request up to the gadget driver */
635 if (controller.driver) 635 if (controller.driver)
636 status = controller.driver->setup(&controller.gadget, &r); 636 status = controller.driver->setup(&controller.gadget, &r);
637 else 637 else
638 status = -ENODEV; 638 status = -ENODEV;
639 639
640 if (!status) 640 if (!status)
641 return; 641 return;
642 DBG("STALL reqname %s type %x value %x, index %x\n", 642 DBG("STALL reqname %s type %x value %x, index %x\n",
643 reqname(r.bRequest), r.bRequestType, r.wValue, r.wIndex); 643 reqname(r.bRequest), r.bRequestType, r.wValue, r.wIndex);
644 writel((1<<16) | (1 << 0), &udc->epctrl[0]); 644 writel((1<<16) | (1 << 0), &udc->epctrl[0]);
645 } 645 }
646 646
647 static void stop_activity(void) 647 static void stop_activity(void)
648 { 648 {
649 int i, num, in; 649 int i, num, in;
650 struct ept_queue_head *head; 650 struct ept_queue_head *head;
651 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor; 651 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
652 writel(readl(&udc->epcomp), &udc->epcomp); 652 writel(readl(&udc->epcomp), &udc->epcomp);
653 #ifdef CONFIG_CI_UDC_HAS_HOSTPC 653 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
654 writel(readl(&udc->epsetupstat), &udc->epsetupstat); 654 writel(readl(&udc->epsetupstat), &udc->epsetupstat);
655 #endif 655 #endif
656 writel(readl(&udc->epstat), &udc->epstat); 656 writel(readl(&udc->epstat), &udc->epstat);
657 writel(0xffffffff, &udc->epflush); 657 writel(0xffffffff, &udc->epflush);
658 658
659 /* error out any pending reqs */ 659 /* error out any pending reqs */
660 for (i = 0; i < NUM_ENDPOINTS; i++) { 660 for (i = 0; i < NUM_ENDPOINTS; i++) {
661 if (i != 0) 661 if (i != 0)
662 writel(0, &udc->epctrl[i]); 662 writel(0, &udc->epctrl[i]);
663 if (controller.ep[i].desc) { 663 if (controller.ep[i].desc) {
664 num = controller.ep[i].desc->bEndpointAddress 664 num = controller.ep[i].desc->bEndpointAddress
665 & USB_ENDPOINT_NUMBER_MASK; 665 & USB_ENDPOINT_NUMBER_MASK;
666 in = (controller.ep[i].desc->bEndpointAddress 666 in = (controller.ep[i].desc->bEndpointAddress
667 & USB_DIR_IN) != 0; 667 & USB_DIR_IN) != 0;
668 head = ci_get_qh(num, in); 668 head = ci_get_qh(num, in);
669 head->info = INFO_ACTIVE; 669 head->info = INFO_ACTIVE;
670 ci_flush_qh(num); 670 ci_flush_qh(num);
671 } 671 }
672 } 672 }
673 } 673 }
674 674
675 void udc_irq(void) 675 void udc_irq(void)
676 { 676 {
677 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor; 677 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
678 unsigned n = readl(&udc->usbsts); 678 unsigned n = readl(&udc->usbsts);
679 writel(n, &udc->usbsts); 679 writel(n, &udc->usbsts);
680 int bit, i, num, in; 680 int bit, i, num, in;
681 681
682 n &= (STS_SLI | STS_URI | STS_PCI | STS_UI | STS_UEI); 682 n &= (STS_SLI | STS_URI | STS_PCI | STS_UI | STS_UEI);
683 if (n == 0) 683 if (n == 0)
684 return; 684 return;
685 685
686 if (n & STS_URI) { 686 if (n & STS_URI) {
687 DBG("-- reset --\n"); 687 DBG("-- reset --\n");
688 stop_activity(); 688 stop_activity();
689 } 689 }
690 if (n & STS_SLI) 690 if (n & STS_SLI)
691 DBG("-- suspend --\n"); 691 DBG("-- suspend --\n");
692 692
693 if (n & STS_PCI) { 693 if (n & STS_PCI) {
694 int max = 64; 694 int max = 64;
695 int speed = USB_SPEED_FULL; 695 int speed = USB_SPEED_FULL;
696 696
697 #ifdef CONFIG_CI_UDC_HAS_HOSTPC 697 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
698 bit = (readl(&udc->hostpc1_devlc) >> 25) & 3; 698 bit = (readl(&udc->hostpc1_devlc) >> 25) & 3;
699 #else 699 #else
700 bit = (readl(&udc->portsc) >> 26) & 3; 700 bit = (readl(&udc->portsc) >> 26) & 3;
701 #endif 701 #endif
702 DBG("-- portchange %x %s\n", bit, (bit == 2) ? "High" : "Full"); 702 DBG("-- portchange %x %s\n", bit, (bit == 2) ? "High" : "Full");
703 if (bit == 2) { 703 if (bit == 2) {
704 speed = USB_SPEED_HIGH; 704 speed = USB_SPEED_HIGH;
705 max = 512; 705 max = 512;
706 } 706 }
707 controller.gadget.speed = speed; 707 controller.gadget.speed = speed;
708 for (i = 1; i < NUM_ENDPOINTS; i++) { 708 for (i = 1; i < NUM_ENDPOINTS; i++) {
709 if (controller.ep[i].ep.maxpacket > max) 709 if (controller.ep[i].ep.maxpacket > max)
710 controller.ep[i].ep.maxpacket = max; 710 controller.ep[i].ep.maxpacket = max;
711 } 711 }
712 } 712 }
713 713
714 if (n & STS_UEI) 714 if (n & STS_UEI)
715 printf("<UEI %x>\n", readl(&udc->epcomp)); 715 printf("<UEI %x>\n", readl(&udc->epcomp));
716 716
717 if ((n & STS_UI) || (n & STS_UEI)) { 717 if ((n & STS_UI) || (n & STS_UEI)) {
718 #ifdef CONFIG_CI_UDC_HAS_HOSTPC 718 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
719 n = readl(&udc->epsetupstat); 719 n = readl(&udc->epsetupstat);
720 #else 720 #else
721 n = readl(&udc->epstat); 721 n = readl(&udc->epstat);
722 #endif 722 #endif
723 if (n & EPT_RX(0)) 723 if (n & EPT_RX(0))
724 handle_setup(); 724 handle_setup();
725 725
726 n = readl(&udc->epcomp); 726 n = readl(&udc->epcomp);
727 if (n != 0) 727 if (n != 0)
728 writel(n, &udc->epcomp); 728 writel(n, &udc->epcomp);
729 729
730 for (i = 0; i < NUM_ENDPOINTS && n; i++) { 730 for (i = 0; i < NUM_ENDPOINTS && n; i++) {
731 if (controller.ep[i].desc) { 731 if (controller.ep[i].desc) {
732 num = controller.ep[i].desc->bEndpointAddress 732 num = controller.ep[i].desc->bEndpointAddress
733 & USB_ENDPOINT_NUMBER_MASK; 733 & USB_ENDPOINT_NUMBER_MASK;
734 in = (controller.ep[i].desc->bEndpointAddress 734 in = (controller.ep[i].desc->bEndpointAddress
735 & USB_DIR_IN) != 0; 735 & USB_DIR_IN) != 0;
736 bit = (in) ? EPT_TX(num) : EPT_RX(num); 736 bit = (in) ? EPT_TX(num) : EPT_RX(num);
737 if (n & bit) 737 if (n & bit)
738 handle_ep_complete(&controller.ep[i]); 738 handle_ep_complete(&controller.ep[i]);
739 } 739 }
740 } 740 }
741 } 741 }
742 } 742 }
743 743
744 int usb_gadget_handle_interrupts(void) 744 int usb_gadget_handle_interrupts(void)
745 { 745 {
746 u32 value; 746 u32 value;
747 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor; 747 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
748 748
749 value = readl(&udc->usbsts); 749 value = readl(&udc->usbsts);
750 if (value) 750 if (value)
751 udc_irq(); 751 udc_irq();
752 752
753 return value; 753 return value;
754 } 754 }
755 755
756 void udc_disconnect(void) 756 void udc_disconnect(void)
757 { 757 {
758 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor; 758 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
759 /* disable pullup */ 759 /* disable pullup */
760 stop_activity(); 760 stop_activity();
761 writel(USBCMD_FS2, &udc->usbcmd); 761 writel(USBCMD_FS2, &udc->usbcmd);
762 udelay(800); 762 udelay(800);
763 if (controller.driver) 763 if (controller.driver)
764 controller.driver->disconnect(&controller.gadget); 764 controller.driver->disconnect(&controller.gadget);
765 } 765 }
766 766
767 static int ci_pullup(struct usb_gadget *gadget, int is_on) 767 static int ci_pullup(struct usb_gadget *gadget, int is_on)
768 { 768 {
769 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor; 769 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
770 if (is_on) { 770 if (is_on) {
771 /* RESET */ 771 /* RESET */
772 writel(USBCMD_ITC(MICRO_8FRAME) | USBCMD_RST, &udc->usbcmd); 772 writel(USBCMD_ITC(MICRO_8FRAME) | USBCMD_RST, &udc->usbcmd);
773 udelay(200); 773 udelay(200);
774 774
775 writel((unsigned)controller.epts, &udc->epinitaddr); 775 writel((unsigned)controller.epts, &udc->epinitaddr);
776 776
777 /* select DEVICE mode */ 777 /* select DEVICE mode */
778 writel(USBMODE_DEVICE, &udc->usbmode); 778 writel(USBMODE_DEVICE, &udc->usbmode);
779 779
780 writel(0xffffffff, &udc->epflush); 780 writel(0xffffffff, &udc->epflush);
781 781
782 /* Turn on the USB connection by enabling the pullup resistor */ 782 /* Turn on the USB connection by enabling the pullup resistor */
783 writel(USBCMD_ITC(MICRO_8FRAME) | USBCMD_RUN, &udc->usbcmd); 783 writel(USBCMD_ITC(MICRO_8FRAME) | USBCMD_RUN, &udc->usbcmd);
784 } else { 784 } else {
785 udc_disconnect(); 785 udc_disconnect();
786 } 786 }
787 787
788 return 0; 788 return 0;
789 } 789 }
790 790
791 static int ci_udc_probe(void) 791 static int ci_udc_probe(void)
792 { 792 {
793 struct ept_queue_head *head; 793 struct ept_queue_head *head;
794 int i; 794 int i;
795 795
796 const int num = 2 * NUM_ENDPOINTS; 796 const int num = 2 * NUM_ENDPOINTS;
797 797
798 const int eplist_min_align = 4096; 798 const int eplist_min_align = 4096;
799 const int eplist_align = roundup(eplist_min_align, ARCH_DMA_MINALIGN); 799 const int eplist_align = roundup(eplist_min_align, ARCH_DMA_MINALIGN);
800 const int eplist_raw_sz = num * sizeof(struct ept_queue_head); 800 const int eplist_raw_sz = num * sizeof(struct ept_queue_head);
801 const int eplist_sz = roundup(eplist_raw_sz, ARCH_DMA_MINALIGN); 801 const int eplist_sz = roundup(eplist_raw_sz, ARCH_DMA_MINALIGN);
802 802
803 /* The QH list must be aligned to 4096 bytes. */ 803 /* The QH list must be aligned to 4096 bytes. */
804 controller.epts = memalign(eplist_align, eplist_sz); 804 controller.epts = memalign(eplist_align, eplist_sz);
805 if (!controller.epts) 805 if (!controller.epts)
806 return -ENOMEM; 806 return -ENOMEM;
807 memset(controller.epts, 0, eplist_sz); 807 memset(controller.epts, 0, eplist_sz);
808 808
809 controller.items_mem = memalign(ILIST_ALIGN, ILIST_SZ); 809 controller.items_mem = memalign(ILIST_ALIGN, ILIST_SZ);
810 if (!controller.items_mem) { 810 if (!controller.items_mem) {
811 free(controller.epts); 811 free(controller.epts);
812 return -ENOMEM; 812 return -ENOMEM;
813 } 813 }
814 memset(controller.items_mem, 0, ILIST_SZ); 814 memset(controller.items_mem, 0, ILIST_SZ);
815 815
816 for (i = 0; i < 2 * NUM_ENDPOINTS; i++) { 816 for (i = 0; i < 2 * NUM_ENDPOINTS; i++) {
817 /* 817 /*
818 * Configure QH for each endpoint. The structure of the QH list 818 * Configure QH for each endpoint. The structure of the QH list
819 * is such that each two subsequent fields, N and N+1 where N is 819 * is such that each two subsequent fields, N and N+1 where N is
820 * even, in the QH list represent QH for one endpoint. The Nth 820 * even, in the QH list represent QH for one endpoint. The Nth
821 * entry represents OUT configuration and the N+1th entry does 821 * entry represents OUT configuration and the N+1th entry does
822 * represent IN configuration of the endpoint. 822 * represent IN configuration of the endpoint.
823 */ 823 */
824 head = controller.epts + i; 824 head = controller.epts + i;
825 if (i < 2) 825 if (i < 2)
826 head->config = CONFIG_MAX_PKT(EP0_MAX_PACKET_SIZE) 826 head->config = CONFIG_MAX_PKT(EP0_MAX_PACKET_SIZE)
827 | CONFIG_ZLT | CONFIG_IOS; 827 | CONFIG_ZLT | CONFIG_IOS;
828 else 828 else
829 head->config = CONFIG_MAX_PKT(EP_MAX_PACKET_SIZE) 829 head->config = CONFIG_MAX_PKT(EP_MAX_PACKET_SIZE)
830 | CONFIG_ZLT; 830 | CONFIG_ZLT;
831 head->next = TERMINATE; 831 head->next = TERMINATE;
832 head->info = 0; 832 head->info = 0;
833 833
834 if (i & 1) { 834 if (i & 1) {
835 ci_flush_qh(i / 2); 835 ci_flush_qh(i / 2);
836 ci_flush_qtd(i / 2); 836 ci_flush_qtd(i / 2);
837 } 837 }
838 } 838 }
839 839
840 INIT_LIST_HEAD(&controller.gadget.ep_list); 840 INIT_LIST_HEAD(&controller.gadget.ep_list);
841 841
842 /* Init EP 0 */ 842 /* Init EP 0 */
843 memcpy(&controller.ep[0].ep, &ci_ep_init[0], sizeof(*ci_ep_init)); 843 memcpy(&controller.ep[0].ep, &ci_ep_init[0], sizeof(*ci_ep_init));
844 controller.ep[0].desc = &ep0_desc; 844 controller.ep[0].desc = &ep0_desc;
845 INIT_LIST_HEAD(&controller.ep[0].queue); 845 INIT_LIST_HEAD(&controller.ep[0].queue);
846 controller.ep[0].req_primed = false; 846 controller.ep[0].req_primed = false;
847 controller.gadget.ep0 = &controller.ep[0].ep; 847 controller.gadget.ep0 = &controller.ep[0].ep;
848 INIT_LIST_HEAD(&controller.gadget.ep0->ep_list); 848 INIT_LIST_HEAD(&controller.gadget.ep0->ep_list);
849 849
850 /* Init EP 1..n */ 850 /* Init EP 1..n */
851 for (i = 1; i < NUM_ENDPOINTS; i++) { 851 for (i = 1; i < NUM_ENDPOINTS; i++) {
852 memcpy(&controller.ep[i].ep, &ci_ep_init[1], 852 memcpy(&controller.ep[i].ep, &ci_ep_init[1],
853 sizeof(*ci_ep_init)); 853 sizeof(*ci_ep_init));
854 INIT_LIST_HEAD(&controller.ep[i].queue); 854 INIT_LIST_HEAD(&controller.ep[i].queue);
855 controller.ep[i].req_primed = false; 855 controller.ep[i].req_primed = false;
856 list_add_tail(&controller.ep[i].ep.ep_list, 856 list_add_tail(&controller.ep[i].ep.ep_list,
857 &controller.gadget.ep_list); 857 &controller.gadget.ep_list);
858 } 858 }
859 859
860 ci_ep_alloc_request(&controller.ep[0].ep, 0); 860 ci_ep_alloc_request(&controller.ep[0].ep, 0);
861 if (!controller.ep0_req) { 861 if (!controller.ep0_req) {
862 free(controller.items_mem); 862 free(controller.items_mem);
863 free(controller.epts); 863 free(controller.epts);
864 return -ENOMEM; 864 return -ENOMEM;
865 } 865 }
866 866
867 return 0; 867 return 0;
868 } 868 }
869 869
870 int usb_gadget_register_driver(struct usb_gadget_driver *driver) 870 int usb_gadget_register_driver(struct usb_gadget_driver *driver)
871 { 871 {
872 int ret; 872 int ret;
873 873
874 if (!driver) 874 if (!driver)
875 return -EINVAL; 875 return -EINVAL;
876 if (!driver->bind || !driver->setup || !driver->disconnect) 876 if (!driver->bind || !driver->setup || !driver->disconnect)
877 return -EINVAL; 877 return -EINVAL;
878 if (driver->speed != USB_SPEED_FULL && driver->speed != USB_SPEED_HIGH) 878 if (driver->speed != USB_SPEED_FULL && driver->speed != USB_SPEED_HIGH)
879 return -EINVAL; 879 return -EINVAL;
880 880
881 ret = usb_lowlevel_init(0, USB_INIT_DEVICE, (void **)&controller.ctrl); 881 ret = usb_lowlevel_init(0, USB_INIT_DEVICE, (void **)&controller.ctrl);
882 if (ret) 882 if (ret)
883 return ret; 883 return ret;
884 884
885 ret = ci_udc_probe(); 885 ret = ci_udc_probe();
886 #if defined(CONFIG_USB_EHCI_MX6) || defined(CONFIG_USB_EHCI_MXS) 886 #if defined(CONFIG_USB_EHCI_MX6) || defined(CONFIG_USB_EHCI_MXS)
887 /* 887 /*
888 * FIXME: usb_lowlevel_init()->ehci_hcd_init() should be doing all 888 * FIXME: usb_lowlevel_init()->ehci_hcd_init() should be doing all
889 * HW-specific initialization, e.g. ULPI-vs-UTMI PHY selection 889 * HW-specific initialization, e.g. ULPI-vs-UTMI PHY selection
890 */ 890 */
891 if (!ret) { 891 if (!ret) {
892 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor; 892 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
893 893
894 /* select ULPI phy */ 894 /* select ULPI phy */
895 writel(PTS(PTS_ENABLE) | PFSC, &udc->portsc); 895 writel(PTS(PTS_ENABLE) | PFSC, &udc->portsc);
896 } 896 }
897 #endif 897 #endif
898 898
899 ret = driver->bind(&controller.gadget); 899 ret = driver->bind(&controller.gadget);
900 if (ret) { 900 if (ret) {
901 DBG("driver->bind() returned %d\n", ret); 901 DBG("driver->bind() returned %d\n", ret);
902 return ret; 902 return ret;
903 } 903 }
904 controller.driver = driver; 904 controller.driver = driver;
905 905
906 return 0; 906 return 0;
907 } 907 }
908 908
909 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver) 909 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
910 { 910 {
911 udc_disconnect(); 911 udc_disconnect();
912 912
913 driver->unbind(&controller.gadget); 913 driver->unbind(&controller.gadget);
914 controller.driver = NULL; 914 controller.driver = NULL;
915 915
916 ci_ep_free_request(&controller.ep[0].ep, &controller.ep0_req->req); 916 ci_ep_free_request(&controller.ep[0].ep, &controller.ep0_req->req);
917 free(controller.items_mem); 917 free(controller.items_mem);
918 free(controller.epts); 918 free(controller.epts);
919 919
920 return 0; 920 return 0;
921 } 921 }
922 922