hw-me.c 20.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
/*
 *
 * Intel Management Engine Interface (Intel MEI) Linux driver
 * Copyright (c) 2003-2012, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 */

#include <linux/pci.h>

#include <linux/kthread.h>
#include <linux/interrupt.h>

#include "mei_dev.h"
#include "hbm.h"

#include "hw-me.h"
#include "hw-me-regs.h"

/**
 * mei_me_reg_read - Reads 32bit data from the mei device
 *
 * @hw: the me hardware structure
 * @offset: offset from which to read the data
 *
 * Return: register value (u32)
 */
static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
			       unsigned long offset)
{
	return ioread32(hw->mem_addr + offset);
}


/**
 * mei_me_reg_write - Writes 32bit data to the mei device
 *
 * @hw: the me hardware structure
 * @offset: offset from which to write the data
 * @value: register value to write (u32)
 */
static inline void mei_me_reg_write(const struct mei_me_hw *hw,
				 unsigned long offset, u32 value)
{
	iowrite32(value, hw->mem_addr + offset);
}

/**
 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
 *  read window register
 *
 * @dev: the device structure
 *
 * Return: ME_CB_RW register value (u32)
 */
static u32 mei_me_mecbrw_read(const struct mei_device *dev)
{
	return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
}
/**
 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
 *
 * @hw: the me hardware structure
 *
 * Return: ME_CSR_HA register value (u32)
 */
static inline u32 mei_me_mecsr_read(const struct mei_me_hw *hw)
{
	return mei_me_reg_read(hw, ME_CSR_HA);
}

/**
 * mei_hcsr_read - Reads 32bit data from the host CSR
 *
 * @hw: the me hardware structure
 *
 * Return: H_CSR register value (u32)
 */
static inline u32 mei_hcsr_read(const struct mei_me_hw *hw)
{
	return mei_me_reg_read(hw, H_CSR);
}

/**
 * mei_hcsr_set - writes H_CSR register to the mei device,
 * and ignores the H_IS bit for it is write-one-to-zero.
 *
 * @hw: the me hardware structure
 * @hcsr: new register value
 */
static inline void mei_hcsr_set(struct mei_me_hw *hw, u32 hcsr)
{
	hcsr &= ~H_IS;
	mei_me_reg_write(hw, H_CSR, hcsr);
}

/**
 * mei_me_fw_status - read fw status register from pci config space
 *
 * @dev: mei device
 * @fw_status: fw status register values
 *
 * Return: 0 on success, error otherwise
 */
static int mei_me_fw_status(struct mei_device *dev,
			    struct mei_fw_status *fw_status)
{
	struct pci_dev *pdev = to_pci_dev(dev->dev);
	struct mei_me_hw *hw = to_me_hw(dev);
	const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
	int ret;
	int i;

	if (!fw_status)
		return -EINVAL;

	fw_status->count = fw_src->count;
	for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
		ret = pci_read_config_dword(pdev,
			fw_src->status[i], &fw_status->status[i]);
		if (ret)
			return ret;
	}

	return 0;
}

/**
 * mei_me_hw_config - configure hw dependent settings
 *
 * @dev: mei device
 */
static void mei_me_hw_config(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 hcsr = mei_hcsr_read(to_me_hw(dev));
	/* Doesn't change in runtime */
	dev->hbuf_depth = (hcsr & H_CBD) >> 24;

	hw->pg_state = MEI_PG_OFF;
}

/**
 * mei_me_pg_state  - translate internal pg state
 *   to the mei power gating state
 *
 * @dev:  mei device
 *
 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
 */
static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);

	return hw->pg_state;
}

/**
 * mei_me_intr_clear - clear and stop interrupts
 *
 * @dev: the device structure
 */
static void mei_me_intr_clear(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 hcsr = mei_hcsr_read(hw);

	if ((hcsr & H_IS) == H_IS)
		mei_me_reg_write(hw, H_CSR, hcsr);
}
/**
 * mei_me_intr_enable - enables mei device interrupts
 *
 * @dev: the device structure
 */
static void mei_me_intr_enable(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 hcsr = mei_hcsr_read(hw);

	hcsr |= H_IE;
	mei_hcsr_set(hw, hcsr);
}

/**
 * mei_me_intr_disable - disables mei device interrupts
 *
 * @dev: the device structure
 */
static void mei_me_intr_disable(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 hcsr = mei_hcsr_read(hw);

	hcsr  &= ~H_IE;
	mei_hcsr_set(hw, hcsr);
}

/**
 * mei_me_hw_reset_release - release device from the reset
 *
 * @dev: the device structure
 */
static void mei_me_hw_reset_release(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 hcsr = mei_hcsr_read(hw);

	hcsr |= H_IG;
	hcsr &= ~H_RST;
	mei_hcsr_set(hw, hcsr);

	/* complete this write before we set host ready on another CPU */
	mmiowb();
}
/**
 * mei_me_hw_reset - resets fw via mei csr register.
 *
 * @dev: the device structure
 * @intr_enable: if interrupt should be enabled after reset.
 *
 * Return: always 0
 */
static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 hcsr = mei_hcsr_read(hw);

	/* H_RST may be found lit before reset is started,
	 * for example if preceding reset flow hasn't completed.
	 * In that case asserting H_RST will be ignored, therefore
	 * we need to clean H_RST bit to start a successful reset sequence.
	 */
	if ((hcsr & H_RST) == H_RST) {
		dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
		hcsr &= ~H_RST;
		mei_me_reg_write(hw, H_CSR, hcsr);
		hcsr = mei_hcsr_read(hw);
	}

	hcsr |= H_RST | H_IG | H_IS;

	if (intr_enable)
		hcsr |= H_IE;
	else
		hcsr &= ~H_IE;

	dev->recvd_hw_ready = false;
	mei_me_reg_write(hw, H_CSR, hcsr);

	/*
	 * Host reads the H_CSR once to ensure that the
	 * posted write to H_CSR completes.
	 */
	hcsr = mei_hcsr_read(hw);

	if ((hcsr & H_RST) == 0)
		dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);

	if ((hcsr & H_RDY) == H_RDY)
		dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);

	if (intr_enable == false)
		mei_me_hw_reset_release(dev);

	return 0;
}

/**
 * mei_me_host_set_ready - enable device
 *
 * @dev: mei device
 */
static void mei_me_host_set_ready(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 hcsr = mei_hcsr_read(hw);

	hcsr |= H_IE | H_IG | H_RDY;
	mei_hcsr_set(hw, hcsr);
}

/**
 * mei_me_host_is_ready - check whether the host has turned ready
 *
 * @dev: mei device
 * Return: bool
 */
static bool mei_me_host_is_ready(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 hcsr = mei_hcsr_read(hw);

	return (hcsr & H_RDY) == H_RDY;
}

/**
 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
 *
 * @dev: mei device
 * Return: bool
 */
static bool mei_me_hw_is_ready(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 mecsr = mei_me_mecsr_read(hw);

	return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
}

/**
 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
 *  or timeout is reached
 *
 * @dev: mei device
 * Return: 0 on success, error otherwise
 */
static int mei_me_hw_ready_wait(struct mei_device *dev)
{
	mutex_unlock(&dev->device_lock);
	wait_event_timeout(dev->wait_hw_ready,
			dev->recvd_hw_ready,
			mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
	mutex_lock(&dev->device_lock);
	if (!dev->recvd_hw_ready) {
		dev_err(dev->dev, "wait hw ready failed\n");
		return -ETIME;
	}

	dev->recvd_hw_ready = false;
	return 0;
}

/**
 * mei_me_hw_start - hw start routine
 *
 * @dev: mei device
 * Return: 0 on success, error otherwise
 */
static int mei_me_hw_start(struct mei_device *dev)
{
	int ret = mei_me_hw_ready_wait(dev);

	if (ret)
		return ret;
	dev_dbg(dev->dev, "hw is ready\n");

	mei_me_host_set_ready(dev);
	return ret;
}


/**
 * mei_hbuf_filled_slots - gets number of device filled buffer slots
 *
 * @dev: the device structure
 *
 * Return: number of filled slots
 */
static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 hcsr;
	char read_ptr, write_ptr;

	hcsr = mei_hcsr_read(hw);

	read_ptr = (char) ((hcsr & H_CBRP) >> 8);
	write_ptr = (char) ((hcsr & H_CBWP) >> 16);

	return (unsigned char) (write_ptr - read_ptr);
}

/**
 * mei_me_hbuf_is_empty - checks if host buffer is empty.
 *
 * @dev: the device structure
 *
 * Return: true if empty, false - otherwise.
 */
static bool mei_me_hbuf_is_empty(struct mei_device *dev)
{
	return mei_hbuf_filled_slots(dev) == 0;
}

/**
 * mei_me_hbuf_empty_slots - counts write empty slots.
 *
 * @dev: the device structure
 *
 * Return: -EOVERFLOW if overflow, otherwise empty slots count
 */
static int mei_me_hbuf_empty_slots(struct mei_device *dev)
{
	unsigned char filled_slots, empty_slots;

	filled_slots = mei_hbuf_filled_slots(dev);
	empty_slots = dev->hbuf_depth - filled_slots;

	/* check for overflow */
	if (filled_slots > dev->hbuf_depth)
		return -EOVERFLOW;

	return empty_slots;
}

/**
 * mei_me_hbuf_max_len - returns size of hw buffer.
 *
 * @dev: the device structure
 *
 * Return: size of hw buffer in bytes
 */
static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
{
	return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
}


/**
 * mei_me_write_message - writes a message to mei device.
 *
 * @dev: the device structure
 * @header: mei HECI header of message
 * @buf: message payload will be written
 *
 * Return: -EIO if write has failed
 */
static int mei_me_write_message(struct mei_device *dev,
			struct mei_msg_hdr *header,
			unsigned char *buf)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	unsigned long rem;
	unsigned long length = header->length;
	u32 *reg_buf = (u32 *)buf;
	u32 hcsr;
	u32 dw_cnt;
	int i;
	int empty_slots;

	dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));

	empty_slots = mei_hbuf_empty_slots(dev);
	dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);

	dw_cnt = mei_data2slots(length);
	if (empty_slots < 0 || dw_cnt > empty_slots)
		return -EMSGSIZE;

	mei_me_reg_write(hw, H_CB_WW, *((u32 *) header));

	for (i = 0; i < length / 4; i++)
		mei_me_reg_write(hw, H_CB_WW, reg_buf[i]);

	rem = length & 0x3;
	if (rem > 0) {
		u32 reg = 0;

		memcpy(&reg, &buf[length - rem], rem);
		mei_me_reg_write(hw, H_CB_WW, reg);
	}

	hcsr = mei_hcsr_read(hw) | H_IG;
	mei_hcsr_set(hw, hcsr);
	if (!mei_me_hw_is_ready(dev))
		return -EIO;

	return 0;
}

/**
 * mei_me_count_full_read_slots - counts read full slots.
 *
 * @dev: the device structure
 *
 * Return: -EOVERFLOW if overflow, otherwise filled slots count
 */
static int mei_me_count_full_read_slots(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 me_csr;
	char read_ptr, write_ptr;
	unsigned char buffer_depth, filled_slots;

	me_csr = mei_me_mecsr_read(hw);
	buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
	read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
	write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
	filled_slots = (unsigned char) (write_ptr - read_ptr);

	/* check for overflow */
	if (filled_slots > buffer_depth)
		return -EOVERFLOW;

	dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
	return (int)filled_slots;
}

/**
 * mei_me_read_slots - reads a message from mei device.
 *
 * @dev: the device structure
 * @buffer: message buffer will be written
 * @buffer_length: message size will be read
 *
 * Return: always 0
 */
static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
		    unsigned long buffer_length)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 *reg_buf = (u32 *)buffer;
	u32 hcsr;

	for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
		*reg_buf++ = mei_me_mecbrw_read(dev);

	if (buffer_length > 0) {
		u32 reg = mei_me_mecbrw_read(dev);

		memcpy(reg_buf, &reg, buffer_length);
	}

	hcsr = mei_hcsr_read(hw) | H_IG;
	mei_hcsr_set(hw, hcsr);
	return 0;
}

/**
 * mei_me_pg_enter - write pg enter register
 *
 * @dev: the device structure
 */
static void mei_me_pg_enter(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 reg = mei_me_reg_read(hw, H_HPG_CSR);

	reg |= H_HPG_CSR_PGI;
	mei_me_reg_write(hw, H_HPG_CSR, reg);
}

/**
 * mei_me_pg_exit - write pg exit register
 *
 * @dev: the device structure
 */
static void mei_me_pg_exit(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 reg = mei_me_reg_read(hw, H_HPG_CSR);

	WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");

	reg |= H_HPG_CSR_PGIHEXR;
	mei_me_reg_write(hw, H_HPG_CSR, reg);
}

/**
 * mei_me_pg_set_sync - perform pg entry procedure
 *
 * @dev: the device structure
 *
 * Return: 0 on success an error code otherwise
 */
int mei_me_pg_set_sync(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
	int ret;

	dev->pg_event = MEI_PG_EVENT_WAIT;

	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
	if (ret)
		return ret;

	mutex_unlock(&dev->device_lock);
	wait_event_timeout(dev->wait_pg,
		dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
	mutex_lock(&dev->device_lock);

	if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
		mei_me_pg_enter(dev);
		ret = 0;
	} else {
		ret = -ETIME;
	}

	dev->pg_event = MEI_PG_EVENT_IDLE;
	hw->pg_state = MEI_PG_ON;

	return ret;
}

/**
 * mei_me_pg_unset_sync - perform pg exit procedure
 *
 * @dev: the device structure
 *
 * Return: 0 on success an error code otherwise
 */
int mei_me_pg_unset_sync(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
	int ret;

	if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
		goto reply;

	dev->pg_event = MEI_PG_EVENT_WAIT;

	mei_me_pg_exit(dev);

	mutex_unlock(&dev->device_lock);
	wait_event_timeout(dev->wait_pg,
		dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
	mutex_lock(&dev->device_lock);

reply:
	if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
		ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
	else
		ret = -ETIME;

	dev->pg_event = MEI_PG_EVENT_IDLE;
	hw->pg_state = MEI_PG_OFF;

	return ret;
}

/**
 * mei_me_pg_is_enabled - detect if PG is supported by HW
 *
 * @dev: the device structure
 *
 * Return: true is pg supported, false otherwise
 */
static bool mei_me_pg_is_enabled(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 reg = mei_me_reg_read(hw, ME_CSR_HA);

	if ((reg & ME_PGIC_HRA) == 0)
		goto notsupported;

	if (!dev->hbm_f_pg_supported)
		goto notsupported;

	return true;

notsupported:
	dev_dbg(dev->dev, "pg: not supported: HGP = %d hbm version %d.%d ?= %d.%d\n",
		!!(reg & ME_PGIC_HRA),
		dev->version.major_version,
		dev->version.minor_version,
		HBM_MAJOR_VERSION_PGI,
		HBM_MINOR_VERSION_PGI);

	return false;
}

/**
 * mei_me_irq_quick_handler - The ISR of the MEI device
 *
 * @irq: The irq number
 * @dev_id: pointer to the device structure
 *
 * Return: irqreturn_t
 */

irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
{
	struct mei_device *dev = (struct mei_device *) dev_id;
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 csr_reg = mei_hcsr_read(hw);

	if ((csr_reg & H_IS) != H_IS)
		return IRQ_NONE;

	/* clear H_IS bit in H_CSR */
	mei_me_reg_write(hw, H_CSR, csr_reg);

	return IRQ_WAKE_THREAD;
}

/**
 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
 * processing.
 *
 * @irq: The irq number
 * @dev_id: pointer to the device structure
 *
 * Return: irqreturn_t
 *
 */
irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
{
	struct mei_device *dev = (struct mei_device *) dev_id;
	struct mei_cl_cb complete_list;
	s32 slots;
	int rets = 0;

	dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
	/* initialize our complete list */
	mutex_lock(&dev->device_lock);
	mei_io_list_init(&complete_list);

	/* Ack the interrupt here
	 * In case of MSI we don't go through the quick handler */
	if (pci_dev_msi_enabled(to_pci_dev(dev->dev)))
		mei_clear_interrupts(dev);

	/* check if ME wants a reset */
	if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
		dev_warn(dev->dev, "FW not ready: resetting.\n");
		schedule_work(&dev->reset_work);
		goto end;
	}

	/*  check if we need to start the dev */
	if (!mei_host_is_ready(dev)) {
		if (mei_hw_is_ready(dev)) {
			mei_me_hw_reset_release(dev);
			dev_dbg(dev->dev, "we need to start the dev.\n");

			dev->recvd_hw_ready = true;
			wake_up(&dev->wait_hw_ready);
		} else {
			dev_dbg(dev->dev, "Spurious Interrupt\n");
		}
		goto end;
	}
	/* check slots available for reading */
	slots = mei_count_full_read_slots(dev);
	while (slots > 0) {
		dev_dbg(dev->dev, "slots to read = %08x\n", slots);
		rets = mei_irq_read_handler(dev, &complete_list, &slots);
		/* There is a race between ME write and interrupt delivery:
		 * Not all data is always available immediately after the
		 * interrupt, so try to read again on the next interrupt.
		 */
		if (rets == -ENODATA)
			break;

		if (rets && dev->dev_state != MEI_DEV_RESETTING) {
			dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
						rets);
			schedule_work(&dev->reset_work);
			goto end;
		}
	}

	dev->hbuf_is_ready = mei_hbuf_is_ready(dev);

	/*
	 * During PG handshake only allowed write is the replay to the
	 * PG exit message, so block calling write function
	 * if the pg state is not idle
	 */
	if (dev->pg_event == MEI_PG_EVENT_IDLE) {
		rets = mei_irq_write_handler(dev, &complete_list);
		dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
	}

	mei_irq_compl_handler(dev, &complete_list);

end:
	dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
	mutex_unlock(&dev->device_lock);
	return IRQ_HANDLED;
}

static const struct mei_hw_ops mei_me_hw_ops = {

	.fw_status = mei_me_fw_status,
	.pg_state  = mei_me_pg_state,

	.host_is_ready = mei_me_host_is_ready,

	.hw_is_ready = mei_me_hw_is_ready,
	.hw_reset = mei_me_hw_reset,
	.hw_config = mei_me_hw_config,
	.hw_start = mei_me_hw_start,

	.pg_is_enabled = mei_me_pg_is_enabled,

	.intr_clear = mei_me_intr_clear,
	.intr_enable = mei_me_intr_enable,
	.intr_disable = mei_me_intr_disable,

	.hbuf_free_slots = mei_me_hbuf_empty_slots,
	.hbuf_is_ready = mei_me_hbuf_is_empty,
	.hbuf_max_len = mei_me_hbuf_max_len,

	.write = mei_me_write_message,

	.rdbuf_full_slots = mei_me_count_full_read_slots,
	.read_hdr = mei_me_mecbrw_read,
	.read = mei_me_read_slots
};

static bool mei_me_fw_type_nm(struct pci_dev *pdev)
{
	u32 reg;

	pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
	/* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
	return (reg & 0x600) == 0x200;
}

#define MEI_CFG_FW_NM                           \
	.quirk_probe = mei_me_fw_type_nm

static bool mei_me_fw_type_sps(struct pci_dev *pdev)
{
	u32 reg;
	/* Read ME FW Status check for SPS Firmware */
	pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
	/* if bits [19:16] = 15, running SPS Firmware */
	return (reg & 0xf0000) == 0xf0000;
}

#define MEI_CFG_FW_SPS                           \
	.quirk_probe = mei_me_fw_type_sps


#define MEI_CFG_LEGACY_HFS                      \
	.fw_status.count = 0

#define MEI_CFG_ICH_HFS                        \
	.fw_status.count = 1,                   \
	.fw_status.status[0] = PCI_CFG_HFS_1

#define MEI_CFG_PCH_HFS                         \
	.fw_status.count = 2,                   \
	.fw_status.status[0] = PCI_CFG_HFS_1,   \
	.fw_status.status[1] = PCI_CFG_HFS_2

#define MEI_CFG_PCH8_HFS                        \
	.fw_status.count = 6,                   \
	.fw_status.status[0] = PCI_CFG_HFS_1,   \
	.fw_status.status[1] = PCI_CFG_HFS_2,   \
	.fw_status.status[2] = PCI_CFG_HFS_3,   \
	.fw_status.status[3] = PCI_CFG_HFS_4,   \
	.fw_status.status[4] = PCI_CFG_HFS_5,   \
	.fw_status.status[5] = PCI_CFG_HFS_6

/* ICH Legacy devices */
const struct mei_cfg mei_me_legacy_cfg = {
	MEI_CFG_LEGACY_HFS,
};

/* ICH devices */
const struct mei_cfg mei_me_ich_cfg = {
	MEI_CFG_ICH_HFS,
};

/* PCH devices */
const struct mei_cfg mei_me_pch_cfg = {
	MEI_CFG_PCH_HFS,
};


/* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
	MEI_CFG_PCH_HFS,
	MEI_CFG_FW_NM,
};

/* PCH8 Lynx Point and newer devices */
const struct mei_cfg mei_me_pch8_cfg = {
	MEI_CFG_PCH8_HFS,
};

/* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
const struct mei_cfg mei_me_pch8_sps_cfg = {
	MEI_CFG_PCH8_HFS,
	MEI_CFG_FW_SPS,
};

/**
 * mei_me_dev_init - allocates and initializes the mei device structure
 *
 * @pdev: The pci device structure
 * @cfg: per device generation config
 *
 * Return: The mei_device_device pointer on success, NULL on failure.
 */
struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
				   const struct mei_cfg *cfg)
{
	struct mei_device *dev;
	struct mei_me_hw *hw;

	dev = kzalloc(sizeof(struct mei_device) +
			 sizeof(struct mei_me_hw), GFP_KERNEL);
	if (!dev)
		return NULL;
	hw = to_me_hw(dev);

	mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
	hw->cfg = cfg;
	return dev;
}