eth_hydra.c 15.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright 2009-2011 Freescale Semiconductor, Inc.
 * Author: Timur Tabi <timur@freescale.com>
 */

/*
 * This file handles the board muxing between the Fman Ethernet MACs and
 * the RGMII/SGMII/XGMII PHYs on a Freescale P3041/P5020 "Hydra" reference
 * board. The RGMII PHYs are the two on-board 1Gb ports.  The SGMII PHYs are
 * provided by the standard Freescale four-port SGMII riser card.  The 10Gb
 * XGMII PHY is provided via the XAUI riser card.  Since there is only one
 * Fman device on a P3041 and P5020, we only support one SGMII card and one
 * RGMII card.
 *
 * Muxing is handled via the PIXIS BRDCFG1 register.  The EMI1 bits control
 * muxing among the RGMII PHYs and the SGMII PHYs.  The value for RGMII is
 * always the same (0).  The value for SGMII depends on which slot the riser is
 * inserted in.  The EMI2 bits control muxing for the the XGMII.  Like SGMII,
 * the value is based on which slot the XAUI is inserted in.
 *
 * The SERDES configuration is used to determine where the SGMII and XAUI cards
 * exist, and also which Fman MACs are routed to which PHYs.  So for a given
 * Fman MAC, there is one and only PHY it connects to.  MACs cannot be routed
 * to PHYs dynamically.
 *
 *
 * This file also updates the device tree in three ways:
 *
 * 1) The status of each virtual MDIO node that is referenced by an Ethernet
 *    node is set to "okay".
 *
 * 2) The phy-handle property of each active Ethernet MAC node is set to the
 *    appropriate PHY node.
 *
 * 3) The "mux value" for each virtual MDIO node is set to the correct value,
 *    if necessary.  Some virtual MDIO nodes do not have configurable mux
 *    values, so those values are hard-coded in the DTS.  On the HYDRA board,
 *    the virtual MDIO node for the SGMII card needs to be updated.
 *
 * For all this to work, the device tree needs to have the following:
 *
 * 1) An alias for each PHY node that an Ethernet node could be routed to.
 *
 * 2) An alias for each real and virtual MDIO node that is disabled by default
 * and might need to be enabled, and also might need to have its mux-value
 * updated.
 */

#include <common.h>
#include <netdev.h>
#include <asm/fsl_serdes.h>
#include <fm_eth.h>
#include <fsl_mdio.h>
#include <malloc.h>
#include <fdt_support.h>
#include <fsl_dtsec.h>

#include "../common/ngpixis.h"
#include "../common/fman.h"

#ifdef CONFIG_FMAN_ENET

#define BRDCFG1_EMI1_SEL_MASK	0x78
#define BRDCFG1_EMI1_SEL_SLOT1	0x10
#define BRDCFG1_EMI1_SEL_SLOT2	0x20
#define BRDCFG1_EMI1_SEL_SLOT5	0x30
#define BRDCFG1_EMI1_SEL_SLOT6	0x40
#define BRDCFG1_EMI1_SEL_SLOT7	0x50
#define BRDCFG1_EMI1_SEL_RGMII	0x00
#define BRDCFG1_EMI1_EN		0x08
#define BRDCFG1_EMI2_SEL_MASK	0x06
#define BRDCFG1_EMI2_SEL_SLOT1	0x00
#define BRDCFG1_EMI2_SEL_SLOT2	0x02

#define BRDCFG2_REG_GPIO_SEL	0x20

#define PHY_BASE_ADDR		0x00

/*
 * BRDCFG1 mask and value for each MAC
 *
 * This array contains the BRDCFG1 values (in mask/val format) that route the
 * MDIO bus to a particular RGMII or SGMII PHY.
 */
struct {
	u8 mask;
	u8 val;
} mdio_mux[NUM_FM_PORTS];

/*
 * Mapping of all 18 SERDES lanes to board slots. A value of '0' here means
 * that the mapping must be determined dynamically, or that the lane maps to
 * something other than a board slot
 */
static u8 lane_to_slot[] = {
	7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 1, 1, 0, 0
};

/*
 * Set the board muxing for a given MAC
 *
 * The MDIO layer calls this function every time it wants to talk to a PHY.
 */
void hydra_mux_mdio(u8 mask, u8 val)
{
	clrsetbits_8(&pixis->brdcfg1, mask, val);
}

struct hydra_mdio {
	u8 mask;
	u8 val;
	struct mii_dev *realbus;
};

static int hydra_mdio_read(struct mii_dev *bus, int addr, int devad,
				int regnum)
{
	struct hydra_mdio *priv = bus->priv;

	hydra_mux_mdio(priv->mask, priv->val);

	return priv->realbus->read(priv->realbus, addr, devad, regnum);
}

static int hydra_mdio_write(struct mii_dev *bus, int addr, int devad,
				int regnum, u16 value)
{
	struct hydra_mdio *priv = bus->priv;

	hydra_mux_mdio(priv->mask, priv->val);

	return priv->realbus->write(priv->realbus, addr, devad, regnum, value);
}

static int hydra_mdio_reset(struct mii_dev *bus)
{
	struct hydra_mdio *priv = bus->priv;

	return priv->realbus->reset(priv->realbus);
}

static void hydra_mdio_set_mux(char *name, u8 mask, u8 val)
{
	struct mii_dev *bus = miiphy_get_dev_by_name(name);
	struct hydra_mdio *priv = bus->priv;

	priv->mask = mask;
	priv->val = val;
}

static int hydra_mdio_init(char *realbusname, char *fakebusname)
{
	struct hydra_mdio *hmdio;
	struct mii_dev *bus = mdio_alloc();

	if (!bus) {
		printf("Failed to allocate Hydra MDIO bus\n");
		return -1;
	}

	hmdio = malloc(sizeof(*hmdio));
	if (!hmdio) {
		printf("Failed to allocate Hydra private data\n");
		free(bus);
		return -1;
	}

	bus->read = hydra_mdio_read;
	bus->write = hydra_mdio_write;
	bus->reset = hydra_mdio_reset;
	strcpy(bus->name, fakebusname);

	hmdio->realbus = miiphy_get_dev_by_name(realbusname);

	if (!hmdio->realbus) {
		printf("No bus with name %s\n", realbusname);
		free(bus);
		free(hmdio);
		return -1;
	}

	bus->priv = hmdio;

	return mdio_register(bus);
}

/*
 * Given an alias or a path for a node, set the mux value of that node.
 *
 * If 'alias' is not a valid alias, then it is treated as a full path to the
 * node.  No error checking is performed.
 *
 * This function is normally called to set the fsl,hydra-mdio-muxval property
 * of a virtual MDIO node.
 */
static void fdt_set_mdio_mux(void *fdt, const char *alias, u32 mux)
{
	const char *path = fdt_get_alias(fdt, alias);

	if (!path)
		path = alias;

	do_fixup_by_path(fdt, path, "reg",
			 &mux, sizeof(mux), 1);
	do_fixup_by_path(fdt, path, "fsl,hydra-mdio-muxval",
			 &mux, sizeof(mux), 1);
}

/*
 * Given the following ...
 *
 * 1) A pointer to an Fman Ethernet node (as identified by the 'compat'
 * compatible string and 'addr' physical address)
 *
 * 2) An Fman port
 *
 * ... update the phy-handle property of the Ethernet node to point to the
 * right PHY.  This assumes that we already know the PHY for each port.  That
 * information is stored in mdio_mux[].
 *
 * The offset of the Fman Ethernet node is also passed in for convenience, but
 * it is not used, and we recalculate the offset anyway.
 *
 * Note that what we call "Fman ports" (enum fm_port) is really an Fman MAC.
 * Inside the Fman, "ports" are things that connect to MACs.  We only call them
 * ports in U-Boot because on previous Ethernet devices (e.g. Gianfar), MACs
 * and ports are the same thing.
 *
 * Note that this code would be cleaner if had a function called
 * fm_info_get_phy_address(), which returns a value from the fm1_dtsec_info[]
 * array.  That's because all we're doing is figuring out the PHY address for
 * a given Fman MAC and writing it to the device tree.  Well, we already did
 * the hard work to figure that out in board_eth_init(), so it's silly to
 * repeat that here.
 */
void board_ft_fman_fixup_port(void *fdt, char *compat, phys_addr_t addr,
			      enum fm_port port, int offset)
{
	unsigned int mux = mdio_mux[port].val & mdio_mux[port].mask;
	char phy[16];

	if (port == FM1_10GEC1) {
		/* XAUI */
		int lane = serdes_get_first_lane(XAUI_FM1);
		if (lane >= 0) {
			/* The XAUI PHY is identified by the slot */
			sprintf(phy, "phy_xgmii_%u", lane_to_slot[lane]);
			fdt_set_phy_handle(fdt, compat, addr, phy);
		}
		return;
	}

	if (mux == (BRDCFG1_EMI1_SEL_RGMII | BRDCFG1_EMI1_EN)) {
		/* RGMII */
		/* The RGMII PHY is identified by the MAC connected to it */
		sprintf(phy, "phy_rgmii_%u", port == FM1_DTSEC4 ? 0 : 1);
		fdt_set_phy_handle(fdt, compat, addr, phy);
		return;
	}

	/* If it's not RGMII or XGMII, it must be SGMII */
	if (mux) {
		/* The SGMII PHY is identified by the MAC connected to it */
		sprintf(phy, "phy_sgmii_%x",
			CONFIG_SYS_FM1_DTSEC1_PHY_ADDR + (port - FM1_DTSEC1));
		fdt_set_phy_handle(fdt, compat, addr, phy);
	}
}

#define PIXIS_SW2_LANE_23_SEL		0x80
#define PIXIS_SW2_LANE_45_SEL		0x40
#define PIXIS_SW2_LANE_67_SEL_MASK	0x30
#define PIXIS_SW2_LANE_67_SEL_5		0x00
#define PIXIS_SW2_LANE_67_SEL_6		0x20
#define PIXIS_SW2_LANE_67_SEL_7		0x10
#define PIXIS_SW2_LANE_8_SEL		0x08
#define PIXIS_SW2_LANE_1617_SEL		0x04

/*
 * Initialize the lane_to_slot[] array.
 *
 * On the P4080DS "Expedition" board, the mapping of SERDES lanes to board
 * slots is hard-coded.  On the Hydra board, however, the mapping is controlled
 * by board switch SW2, so the lane_to_slot[] array needs to be dynamically
 * initialized.
 */
static void initialize_lane_to_slot(void)
{
	u8 sw2 = in_8(&PIXIS_SW(2));

	lane_to_slot[2] = (sw2 & PIXIS_SW2_LANE_23_SEL) ? 7 : 4;
	lane_to_slot[3] = lane_to_slot[2];

	lane_to_slot[4] = (sw2 & PIXIS_SW2_LANE_45_SEL) ? 7 : 6;
	lane_to_slot[5] = lane_to_slot[4];

	switch (sw2 & PIXIS_SW2_LANE_67_SEL_MASK) {
	case PIXIS_SW2_LANE_67_SEL_5:
		lane_to_slot[6] = 5;
		break;
	case PIXIS_SW2_LANE_67_SEL_6:
		lane_to_slot[6] = 6;
		break;
	case PIXIS_SW2_LANE_67_SEL_7:
		lane_to_slot[6] = 7;
		break;
	}
	lane_to_slot[7] = lane_to_slot[6];

	lane_to_slot[8] = (sw2 & PIXIS_SW2_LANE_8_SEL) ? 3 : 0;

	lane_to_slot[16] = (sw2 & PIXIS_SW2_LANE_1617_SEL) ? 1 : 0;
	lane_to_slot[17] = lane_to_slot[16];
}

#endif /* #ifdef CONFIG_FMAN_ENET */

/*
 * Configure the status for the virtual MDIO nodes
 *
 * Rather than create the virtual MDIO nodes from scratch for each active
 * virtual MDIO, we expect the DTS to have the nodes defined already, and we
 * only enable the ones that are actually active.
 *
 * We assume that the DTS already hard-codes the status for all the
 * virtual MDIO nodes to "disabled", so all we need to do is enable the
 * active ones.
 *
 * For SGMII, we also need to set the mux value in the node.
 */
void fdt_fixup_board_enet(void *fdt)
{
#ifdef CONFIG_FMAN_ENET
	unsigned int i;
	int lane;

	for (i = FM1_DTSEC1; i < FM1_DTSEC1 + CONFIG_SYS_NUM_FM1_DTSEC; i++) {
		int idx = i - FM1_DTSEC1;

		switch (fm_info_get_enet_if(i)) {
		case PHY_INTERFACE_MODE_SGMII:
			lane = serdes_get_first_lane(SGMII_FM1_DTSEC1 + idx);
			if (lane >= 0) {
				fdt_status_okay_by_alias(fdt, "emi1_sgmii");
				/* Also set the MUX value */
				fdt_set_mdio_mux(fdt, "emi1_sgmii",
						 mdio_mux[i].val);
			}
			break;
		case PHY_INTERFACE_MODE_RGMII:
		case PHY_INTERFACE_MODE_RGMII_TXID:
		case PHY_INTERFACE_MODE_RGMII_RXID:
		case PHY_INTERFACE_MODE_RGMII_ID:
			fdt_status_okay_by_alias(fdt, "emi1_rgmii");
			break;
		default:
			break;
		}
	}

	lane = serdes_get_first_lane(XAUI_FM1);
	if (lane >= 0)
		fdt_status_okay_by_alias(fdt, "emi2_xgmii");
#endif
}

int board_eth_init(bd_t *bis)
{
#ifdef CONFIG_FMAN_ENET
	struct fsl_pq_mdio_info dtsec_mdio_info;
	struct tgec_mdio_info tgec_mdio_info;
	unsigned int i, slot;
	int lane;
	struct mii_dev *bus;

	printf("Initializing Fman\n");

	initialize_lane_to_slot();

	/* We want to use the PIXIS to configure MUX routing, not GPIOs. */
	setbits_8(&pixis->brdcfg2, BRDCFG2_REG_GPIO_SEL);

	memset(mdio_mux, 0, sizeof(mdio_mux));

	dtsec_mdio_info.regs =
		(struct tsec_mii_mng *)CONFIG_SYS_FM1_DTSEC1_MDIO_ADDR;
	dtsec_mdio_info.name = DEFAULT_FM_MDIO_NAME;

	/* Register the real 1G MDIO bus */
	fsl_pq_mdio_init(bis, &dtsec_mdio_info);

	tgec_mdio_info.regs =
		(struct tgec_mdio_controller *)CONFIG_SYS_FM1_TGEC_MDIO_ADDR;
	tgec_mdio_info.name = DEFAULT_FM_TGEC_MDIO_NAME;

	/* Register the real 10G MDIO bus */
	fm_tgec_mdio_init(bis, &tgec_mdio_info);

	/* Register the three virtual MDIO front-ends */
	hydra_mdio_init(DEFAULT_FM_MDIO_NAME, "HYDRA_RGMII_MDIO");
	hydra_mdio_init(DEFAULT_FM_MDIO_NAME, "HYDRA_SGMII_MDIO");

	/*
	 * Program the DTSEC PHY addresses assuming that they are all SGMII.
	 * For any DTSEC that's RGMII, we'll override its PHY address later.
	 * We assume that DTSEC5 is only used for RGMII.
	 */
	fm_info_set_phy_address(FM1_DTSEC1, CONFIG_SYS_FM1_DTSEC1_PHY_ADDR);
	fm_info_set_phy_address(FM1_DTSEC2, CONFIG_SYS_FM1_DTSEC2_PHY_ADDR);
	fm_info_set_phy_address(FM1_DTSEC3, CONFIG_SYS_FM1_DTSEC3_PHY_ADDR);
	fm_info_set_phy_address(FM1_DTSEC4, CONFIG_SYS_FM1_DTSEC4_PHY_ADDR);

	for (i = FM1_DTSEC1; i < FM1_DTSEC1 + CONFIG_SYS_NUM_FM1_DTSEC; i++) {
		int idx = i - FM1_DTSEC1;

		switch (fm_info_get_enet_if(i)) {
		case PHY_INTERFACE_MODE_SGMII:
			lane = serdes_get_first_lane(SGMII_FM1_DTSEC1 + idx);
			if (lane < 0)
				break;
			slot = lane_to_slot[lane];
			mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK;
			switch (slot) {
			case 1:
				/* Always DTSEC5 on Bank 3 */
				mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT1 |
						  BRDCFG1_EMI1_EN;
				break;
			case 2:
				mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT2 |
						  BRDCFG1_EMI1_EN;
				break;
			case 5:
				mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT5 |
						  BRDCFG1_EMI1_EN;
				break;
			case 6:
				mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT6 |
						  BRDCFG1_EMI1_EN;
				break;
			case 7:
				mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT7 |
						  BRDCFG1_EMI1_EN;
				break;
			};

			hydra_mdio_set_mux("HYDRA_SGMII_MDIO",
					mdio_mux[i].mask, mdio_mux[i].val);
			fm_info_set_mdio(i,
				miiphy_get_dev_by_name("HYDRA_SGMII_MDIO"));
			break;
		case PHY_INTERFACE_MODE_RGMII:
		case PHY_INTERFACE_MODE_RGMII_TXID:
		case PHY_INTERFACE_MODE_RGMII_RXID:
		case PHY_INTERFACE_MODE_RGMII_ID:
			/*
			 * If DTSEC4 is RGMII, then it's routed via via EC1 to
			 * the first on-board RGMII port.  If DTSEC5 is RGMII,
			 * then it's routed via via EC2 to the second on-board
			 * RGMII port. The other DTSECs cannot be routed to
			 * RGMII.
			 */
			fm_info_set_phy_address(i, i == FM1_DTSEC4 ? 0 : 1);
			mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK;
			mdio_mux[i].val  = BRDCFG1_EMI1_SEL_RGMII |
					   BRDCFG1_EMI1_EN;
			hydra_mdio_set_mux("HYDRA_RGMII_MDIO",
					mdio_mux[i].mask, mdio_mux[i].val);
			fm_info_set_mdio(i,
				miiphy_get_dev_by_name("HYDRA_RGMII_MDIO"));
			break;
		case PHY_INTERFACE_MODE_NONE:
			fm_info_set_phy_address(i, 0);
			break;
		default:
			printf("Fman1: DTSEC%u set to unknown interface %i\n",
			       idx + 1, fm_info_get_enet_if(i));
			fm_info_set_phy_address(i, 0);
			break;
		}
	}

	bus = miiphy_get_dev_by_name("HYDRA_SGMII_MDIO");
	set_sgmii_phy(bus, FM1_DTSEC1, CONFIG_SYS_NUM_FM1_DTSEC, PHY_BASE_ADDR);

	/*
	 * For 10G, we only support one XAUI card per Fman.  If present, then we
	 * force its routing and never touch those bits again, which removes the
	 * need for Linux to do any muxing.  This works because of the way
	 * BRDCFG1 is defined, but it's a bit hackish.
	 *
	 * The PHY address for the XAUI card depends on which slot it's in. The
	 * macros we use imply that the PHY address is based on which FM, but
	 * that's not true.  On the P4080DS, FM1 could only use XAUI in slot 5,
	 * and FM2 could only use a XAUI in slot 4.  On the Hydra board, we
	 * check the actual slot and just use the macros as-is, even though
	 * the P3041 and P5020 only have one Fman.
	 */
	lane = serdes_get_first_lane(XAUI_FM1);
	if (lane >= 0) {
		slot = lane_to_slot[lane];
		if (slot == 1) {
			/* XAUI card is in slot 1 */
			clrsetbits_8(&pixis->brdcfg1, BRDCFG1_EMI2_SEL_MASK,
				     BRDCFG1_EMI2_SEL_SLOT1);
			fm_info_set_phy_address(FM1_10GEC1,
						CONFIG_SYS_FM1_10GEC1_PHY_ADDR);
		} else {
			/* XAUI card is in slot 2 */
			clrsetbits_8(&pixis->brdcfg1, BRDCFG1_EMI2_SEL_MASK,
				     BRDCFG1_EMI2_SEL_SLOT2);
			fm_info_set_phy_address(FM1_10GEC1,
						CONFIG_SYS_FM2_10GEC1_PHY_ADDR);
		}
	}

	fm_info_set_mdio(FM1_10GEC1,
			miiphy_get_dev_by_name(DEFAULT_FM_TGEC_MDIO_NAME));

	cpu_eth_init(bis);
#endif

	return pci_eth_init(bis);
}